期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BERT-BiLSTM-CRF的中文地址解析方法
被引量:
9
1
作者
吴恪涵
张雪英
+2 位作者
叶鹏
怀安
张航
《地理与地理信息科学》
CSCD
北大核心
2021年第4期10-15,共6页
中文地址解析是地址匹配的重要环节,广泛应用于地址检索、地理编码和地址信息识别等方面。但传统地址解析方法存在覆盖度有限、人工参与过多和泛化能力较差等问题。为发挥深度学习模型在深层结构上自动学习上下文特征的优势,提出一种基...
中文地址解析是地址匹配的重要环节,广泛应用于地址检索、地理编码和地址信息识别等方面。但传统地址解析方法存在覆盖度有限、人工参与过多和泛化能力较差等问题。为发挥深度学习模型在深层结构上自动学习上下文特征的优势,提出一种基于BERT-BiLSTM-CRF深度学习模型的中文地址解析方法:依据中文地址要素多级分类体系,扩展BIOES标注方法并进行地址语料标注;基于预训练语言模型,构建融合BERT、BiLSTM和CRF的综合深度学习模型,通过BERT预训练语言模型获取富含语义信息的字符向量,弥补静态词向量特异性缺失的问题,提高复杂地址要素的提取能力。以2019年深圳市地址数据为例进行模型性能评估,该方法对于多数中文地址要素的解析准确率达90%以上;相比IDCNN-CRF和BiLSTM-CRF等深度学习模型,该方法对只具有小规模地址语料时的地址解析效果更优,且在解析多种地址要素类型时能保持良好的性能。
展开更多
关键词
中文
地址
地址
要素分类
地址
标注
BERT-BiLSTM-CRF
地址解析模型
在线阅读
下载PDF
职称材料
题名
基于BERT-BiLSTM-CRF的中文地址解析方法
被引量:
9
1
作者
吴恪涵
张雪英
叶鹏
怀安
张航
机构
自然资源部城市国土资源监测与仿真重点实验室
南京师范大学虚拟地理环境教育部重点实验室/江苏省地理信息资源开发与利用协同创新中心
出处
《地理与地理信息科学》
CSCD
北大核心
2021年第4期10-15,共6页
基金
自然资源部城市国土资源监测与仿真重点实验室开放基金项目(KF-2019-04-025)
国家自然科学基金项目(41631177)
国家重点研发计划项目(2017YFB0503602)。
文摘
中文地址解析是地址匹配的重要环节,广泛应用于地址检索、地理编码和地址信息识别等方面。但传统地址解析方法存在覆盖度有限、人工参与过多和泛化能力较差等问题。为发挥深度学习模型在深层结构上自动学习上下文特征的优势,提出一种基于BERT-BiLSTM-CRF深度学习模型的中文地址解析方法:依据中文地址要素多级分类体系,扩展BIOES标注方法并进行地址语料标注;基于预训练语言模型,构建融合BERT、BiLSTM和CRF的综合深度学习模型,通过BERT预训练语言模型获取富含语义信息的字符向量,弥补静态词向量特异性缺失的问题,提高复杂地址要素的提取能力。以2019年深圳市地址数据为例进行模型性能评估,该方法对于多数中文地址要素的解析准确率达90%以上;相比IDCNN-CRF和BiLSTM-CRF等深度学习模型,该方法对只具有小规模地址语料时的地址解析效果更优,且在解析多种地址要素类型时能保持良好的性能。
关键词
中文
地址
地址
要素分类
地址
标注
BERT-BiLSTM-CRF
地址解析模型
Keywords
Chinese address
address element classification
address annotation
BERT-BiLSTM-CRF
address resolution model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
P208 [天文地球—地图制图学与地理信息工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BERT-BiLSTM-CRF的中文地址解析方法
吴恪涵
张雪英
叶鹏
怀安
张航
《地理与地理信息科学》
CSCD
北大核心
2021
9
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部