期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
云南松地上生物量模型研究 被引量:16
1
作者 冉启香 邓华锋 +2 位作者 黄国胜 王雪军 陈振雄 《浙江农林大学学报》 CAS CSCD 北大核心 2016年第4期605-611,共7页
森林生物量作为森林生态系统的最基本数量特征,是研究许多林业问题和生态问题的基础,但由于地域的不同,地上生物量及各分项生物量存在差异.以西藏、云南2 个省(自治区)的1 3 0株实测云南松Pinusyunnanensis生物量数据,分别用传统回归... 森林生物量作为森林生态系统的最基本数量特征,是研究许多林业问题和生态问题的基础,但由于地域的不同,地上生物量及各分项生物量存在差异.以西藏、云南2 个省(自治区)的1 3 0株实测云南松Pinusyunnanensis生物量数据,分别用传统回归方法和利用引入地理区域为特征的哑变量方法建立了地上总生物量和地上各分项生物量的-元(胸径为自变量)、二元(胸径和树高为自变量)和三元(胸径、树高、冠幅为自变量)模型.结果表明:所建生物量模型中,地上总生物量模型精度最高,预估精度为0.930 0-0.960 0 ,其次是树干、树皮和干材生物量模型,预估精度为0.900 0-0.950 0 ,树叶生物量模型的预估精度相对较低,其值为0.850 0-0.890 0 ,而且所有的模型都满足二元模型的预估精度和确定系数比-元模型高,与三元模型相差不大.引入哑变量后的模型中,不管是-元模型、二元模型还是三元模型,模型的确定系数、预估精度都相应提高,确定系数为0.730 0-0.960 0 ,预估精度为0.880 0-0.960 0 ,而且估计值的标准误差和平均相对误差都减少了.因此,构建不同区域地上生物量和和各分项生物量模型时,建议引入哑变量,以提高模型精度和适用性,来解决不同地区模型不相容的问题。 展开更多
关键词 院森林经理学 云南松 地上生物量模型 哑变量 地域
在线阅读 下载PDF
Biomass estimation of Shorea robusta with principal component analysis of satellite data
2
作者 Nilanchal Patel Arnab Majumdar 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第4期469-474,524,共7页
Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of tre... Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs. 展开更多
关键词 above ground biomass spectral response modeling vegetation indices principal component analysis linear and multiple regression analysis.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部