期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
融合多尺度多头自注意力和在线难例挖掘的小样本硅藻检测 被引量:4
1
作者 邓杰航 郭文权 +6 位作者 陈汉杰 顾国生 刘景建 杜宇坤 刘超 康晓东 赵建 《计算机应用》 CSCD 北大核心 2022年第8期2593-2600,共8页
硅藻训练样本量较少时,检测精度偏低,为此在小样本目标检测模型TFA(Two-stage Fine-tuning Approach)的基础上提出一种融合多尺度多头自注意力(MMS)和在线难例挖掘(OHEM)的小样本硅藻检测模型(MMSOFDD)。首先,结合ResNet-101与多头自注... 硅藻训练样本量较少时,检测精度偏低,为此在小样本目标检测模型TFA(Two-stage Fine-tuning Approach)的基础上提出一种融合多尺度多头自注意力(MMS)和在线难例挖掘(OHEM)的小样本硅藻检测模型(MMSOFDD)。首先,结合ResNet-101与多头自注意力机制构造一个基于Transformer的特征提取网络BoTNet-101,以充分利用硅藻图像的局部和全局信息;然后,改进多头自注意力为MMS,消除了原始多头自注意力的处理目标尺度单一的局限性;最后,引入OHEM到模型预测器中,并对硅藻进行识别与定位。把所提模型与其他小样本目标检测模型在自建硅藻数据集上进行消融及对比实验。实验结果表明:与TFA相比,MMSOFDD的平均精度均值(mAP)为69.60%,TFA为63.71%,MMSOFDD提高了5.89个百分点;与小样本目标检测模型Meta R-CNN和FSIW相比,Meta R-CNN和FSIW的mAP分别为61.60%和60.90%,所提模型的mAP分别提高了8.00个百分点和8.70个百分点。而且,MMSOFDD在硅藻训练样本量少的条件下能够有效地提高检测模型对硅藻的检测精度。 展开更多
关键词 小样本 硅藻检测 卷积神经网络 TRANSFORMER 在线难例挖掘 多尺度多头自注意力
在线阅读 下载PDF
面向捕获任务的失效卫星关键部件分割算法
2
作者 曹毅 刘丰宇 +1 位作者 程向红 牟金震 《宇航学报》 北大核心 2025年第7期1321-1331,共11页
为解决失效卫星关键部件语义分割算法在低照度环境下对小目标识别能力欠佳的问题,以BiSeNetv2为初始基准算法,提出一种基于双注意力机制的双边主干网络。该方法创新性地分别将“卷积+自注意力”混合机制与通道注意力机制嵌入BiSeNetv2... 为解决失效卫星关键部件语义分割算法在低照度环境下对小目标识别能力欠佳的问题,以BiSeNetv2为初始基准算法,提出一种基于双注意力机制的双边主干网络。该方法创新性地分别将“卷积+自注意力”混合机制与通道注意力机制嵌入BiSeNetv2的上下文信息路径和空间信息路径,强化对小目标关键部件全局及局部特征信息的捕捉。同时,引入在线难例挖掘策略优化损失函数,有效提升了低照度条件下类间相似小目标的分割精度。通过建立半物理数据集开展消融实验与对比实验,结果表明,该分割算法的mIoU达0.762,mIoU_s为0.546。实验证实,所提算法在低照度与小目标联合作用下,能显著提升失效卫星关键部件的识别精度,为相关领域研究提供了新的技术思路。 展开更多
关键词 失效卫星 关键部件 语义分割 双注意力机制 在线难例挖掘
在线阅读 下载PDF
基于Faster R-CNN的人体行为检测研究 被引量:19
3
作者 莫宏伟 汪海波 《智能系统学报》 CSCD 北大核心 2018年第6期967-973,共7页
由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算... 由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算法来进行人体行为检测,并对Faster R-CNN算法与批量规范化算法和在线难例挖掘算法进行结合,有效利用了深度学习算法实现人体行为检测。对此改进算法进行实验验证,验证的分类和位置精度达到了80%以上,实验结果表明,改进的算法具有识别精度高的特点。 展开更多
关键词 人体行为检测 更快速区域卷积神经网络 在线难例挖掘 深度学习 目标检测 卷积神经网络 批规范化 迁移学习
在线阅读 下载PDF
基于改进Faster R-CNN的马铃薯芽眼识别方法 被引量:23
4
作者 席芮 姜凯 +2 位作者 张万枝 吕钊钦 侯加林 《农业机械学报》 EI CAS CSCD 北大核心 2020年第4期216-223,共8页
为提高对马铃薯芽眼的识别效果,提出一种基于改进Faster R-CNN的马铃薯芽眼识别方法。对Faster RCNN中的非极大值抑制(Non-maximum suppression,NMS)算法进行优化,对与M交并比(Intersection over union,IOU)大于等于Nt的相邻检测框,利... 为提高对马铃薯芽眼的识别效果,提出一种基于改进Faster R-CNN的马铃薯芽眼识别方法。对Faster RCNN中的非极大值抑制(Non-maximum suppression,NMS)算法进行优化,对与M交并比(Intersection over union,IOU)大于等于Nt的相邻检测框,利用高斯降权函数对其置信度进行衰减,通过判别参数对衰减后的置信度作进一步判断;在训练过程中加入采用优化NMS算法的在线难例挖掘(Online hard example mining,OHEM)技术,对马铃薯芽眼进行识别试验。试验结果表明:改进的模型识别精度为96.32%,召回率为90.85%,F1为93.51%,平均单幅图像的识别时间为0.183 s。与原始的Faster R-CNN模型相比,改进的模型在不增加运行时间的前提下,精度、召回率、F1分别提升了4.65、6.76、5.79个百分点。改进Faster R-CNN模型能够实现马铃薯芽眼的有效识别,满足实时处理的要求,可为种薯自动切块中的芽眼识别提供参考。 展开更多
关键词 马铃薯芽眼 自动切块 FASTER R-CNN 非极大值抑制 高斯降权 在线难例挖掘
在线阅读 下载PDF
基于改进Faster-RCNN的自然场景人脸检测 被引量:17
5
作者 李祥兵 陈炼 《计算机工程》 CAS CSCD 北大核心 2021年第1期210-216,共7页
为实现对自然场景下小尺度人脸的准确检测,提出一种改进的Faster-RCNN模型。采用ResNet-50提取卷积特征,对不同卷积层的特征图进行多尺度融合,同时将区域建议网络产生的锚框由最初的9个改为15个,以更好地适应小尺度人脸检测场景。在此... 为实现对自然场景下小尺度人脸的准确检测,提出一种改进的Faster-RCNN模型。采用ResNet-50提取卷积特征,对不同卷积层的特征图进行多尺度融合,同时将区域建议网络产生的锚框由最初的9个改为15个,以更好地适应小尺度人脸检测场景。在此基础上,利用在线难例挖掘算法优化训练过程,采用软非极大值抑制方法解决漏检重叠人脸的问题,并在训练阶段通过多尺度训练提高模型的泛化能力。实验结果表明,该模型在Wider Face数据集上平均精度为89.0%,较原Faster-RCNN模型提升3.5%,在FDDB数据集上检出率也高达95.6%。 展开更多
关键词 人脸检测 Faster-RCNN模型 多尺度融合 在线难例挖掘 软非极大值抑制
在线阅读 下载PDF
基于改进Faster-RCNN的机场场面小目标物体检测算法 被引量:17
6
作者 韩松臣 张比浩 +2 位作者 李炜 汤新民 付道勇 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第6期735-741,共7页
针对目前应用于机场视频监控中的卷积神经网络方法存在小目标物体识别准确率较低的问题,本文提出了一种基于Faster-RCNN并结合多尺度特征融合与在线难例挖掘的机场场面小目标检测算法。该算法采用ResNet-101作为特征提取网络,并在该网... 针对目前应用于机场视频监控中的卷积神经网络方法存在小目标物体识别准确率较低的问题,本文提出了一种基于Faster-RCNN并结合多尺度特征融合与在线难例挖掘的机场场面小目标检测算法。该算法采用ResNet-101作为特征提取网络,并在该网络基础上建立了一个带有上采样的“自顶向下”的特征融合模块,以生成语义信息更加丰富的高分辨率特征图。并在网络训练过程中,采用在线难例挖掘的训练策略使模型更加鲁棒地对小目标样本进行定位。最后,手工构建了一个包含5982张图片的机场数据集,用于检测模型的训练和测试。结果表明,本文所提出算法显著提升了机场场面小目标物体检测的准确率,且使整体平均检测准确率达到了80.8%,该结果高于其他先进的目标检测模型。 展开更多
关键词 机场场面监视 多尺度特征融合 在线难例挖掘 小目标物体检测
在线阅读 下载PDF
融合空间注意力的自适应安检违禁品检测方法 被引量:6
7
作者 游玺 侯进 +2 位作者 任东升 杨鹏熙 杜茂生 《计算机工程与应用》 CSCD 北大核心 2023年第21期176-186,共11页
针对X光安检场景违禁品检测精度低,存在误检和漏检的问题,在Cascade R-CNN基础上,提出一种融合空间注意力的自适应安检违禁品检测方法 XPIC R-CNN。在ResNet50中引入可形变卷积作为主干网络,自适应地学习不同尺寸的违禁品特征;结合可形... 针对X光安检场景违禁品检测精度低,存在误检和漏检的问题,在Cascade R-CNN基础上,提出一种融合空间注意力的自适应安检违禁品检测方法 XPIC R-CNN。在ResNet50中引入可形变卷积作为主干网络,自适应地学习不同尺寸的违禁品特征;结合可形变卷积的空间稀疏采样优势和自注意力机制强大的元素间关系建模能力,提出一种空间自适应注意力模块,有效地抑制复杂背景的噪音干扰;提出一种多尺度自适应候选区生成网络,使用语义特征去指导锚框的生成,提高候选框的质量以提升网络的召回率;在级联检测器中引入在线难例挖掘训练策略,解决正负样本不均衡和小样本训练困难的问题。实验结果表明,XPIC R-CNN在数据集SIXray_PI上的平均检测精度为94.5%,召回率为77.4%,比原始算法分别提升了3.2和8.2个百分点,最高漏检率仅有10%。 展开更多
关键词 违禁物品检测 Cascade R-CNN 空间自适应注意力 可形变卷积 在线难例挖掘
在线阅读 下载PDF
基于改进级联R-CNN的面料疵点检测方法 被引量:5
8
作者 许胜宝 郑飂默 袁德成 《现代纺织技术》 北大核心 2022年第2期48-56,共9页
由于布匹疵点种类分布不均,部分疵点具有极端的宽高比,而且小目标较多,导致检测难度大,因此提出一种改进级联R-CNN的布匹疵点检测方法。针对小目标问题,在R-CNN部分采用在线难例挖掘,加强对小目标的训练;针对布匹疵点极端的长宽比,在特... 由于布匹疵点种类分布不均,部分疵点具有极端的宽高比,而且小目标较多,导致检测难度大,因此提出一种改进级联R-CNN的布匹疵点检测方法。针对小目标问题,在R-CNN部分采用在线难例挖掘,加强对小目标的训练;针对布匹疵点极端的长宽比,在特征提取网络中采用了可变形卷积v2来代替传统的正方形卷积,并结合布匹特征重新设计边界框比例。最后采用完全交并比损失作为边界框回归损失,获取更精确的目标边界框。结果表明:对比改进前的模型,改进后的模型预测边界框更加精确,对小目标的疵点检测效果更好,在准确率上提升了3.57%,平均精确度均值提升了6.45%,可以更好地满足面料疵点的检测需求。 展开更多
关键词 级联R-CNN 面料疵点 检测 可变形卷积v2 在线难例挖掘 完全交并比损失
在线阅读 下载PDF
基于改进Faster R-CNN的轮胎缺陷检测方法 被引量:15
9
作者 吴则举 焦翠娟 陈亮 《计算机应用》 CSCD 北大核心 2021年第7期1939-1946,共8页
轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺... 轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺陷自动检测方法。首先,在预处理阶段,用直方图均衡化方法对轮胎图象的灰度进行拉伸,提高数据集的对比度,使图像目标和背景的灰度值产生明显差异;其次,为提高轮胎缺陷位置检测和识别的准确率,对Faster R-CNN结构进行改进,即把ZF卷积神经网络中第三层的卷积特征和第五层的卷积特征结合后输出,并将其作为区域建议网络层的输入;然后,在RoI pooling层之后引入在线难例挖掘(OHEM)算法,使轮胎缺陷检测的准确率得到进一步的提高。实验结果表明,改进后的Faster R-CNN的轮胎缺陷检测方法可以准确地分类和定位轮胎X射线图像缺陷,平均测试准确率可以达到95.7%。此外,还可以通过对网络进行微调来获得新的检测模型以检测其他类型的缺陷。 展开更多
关键词 Faster R-CNN 轮胎缺陷检测 ZF卷积神经网络 在线难例挖掘
在线阅读 下载PDF
基于改进Faster R-CNN的超新星目标检测方法 被引量:3
10
作者 高宏伟 韩晓红 周稻祥 《计算机工程》 CAS CSCD 北大核心 2020年第10期282-288,共7页
在进行超新星目标检测时,图像背景复杂、目标较小以及正负样本不平衡导致图像对比不明显和特征提取难度大等问题。为此,从数据合成、特征提取网络优化等方面对Faster R-CNN算法进行改进,提出一种超新星目标检测方法。将每组图像进行合... 在进行超新星目标检测时,图像背景复杂、目标较小以及正负样本不平衡导致图像对比不明显和特征提取难度大等问题。为此,从数据合成、特征提取网络优化等方面对Faster R-CNN算法进行改进,提出一种超新星目标检测方法。将每组图像进行合成以提高图像的对比度。针对特征提取难度大的问题,使用深度残差网络提取合成图像的特征,并将顶层特征依次与低层特征相融合,构建特征金字塔网络,使每一层网络都具有较强的语义信息。采用在线难例挖掘方法对高损失样本进行训练,以处理正负样本不平衡的问题,从而提高算法的检测性能。实验结果表明,与原始Faster R-CNN算法相比,该算法的Score与F1值分别提高8.51%和45.52%,且其检测性能与泛化能力均较高。 展开更多
关键词 超新星 神经网络 目标检测 特征金字塔网络 在线难例挖掘
在线阅读 下载PDF
基于改进Faster RCNN的小尺度铁路侵限算法 被引量:4
11
作者 余志强 张明 《计算机工程与设计》 北大核心 2022年第4期1023-1031,共9页
针对目前传统铁路异物侵线检测算法识别精度不高、对于小尺度目标异物存在漏检等问题,提出一种基于改进Faster RCNN的小尺度铁路侵限算法。在特征提取网络中利用特征金字塔模型将高层特征与低层特征相融合;通过修改锚点框尺寸和增加锚... 针对目前传统铁路异物侵线检测算法识别精度不高、对于小尺度目标异物存在漏检等问题,提出一种基于改进Faster RCNN的小尺度铁路侵限算法。在特征提取网络中利用特征金字塔模型将高层特征与低层特征相融合;通过修改锚点框尺寸和增加锚点个数来提高对目标建议区域的精确性;提出一种基于衰减得分的NMS算法;在引入迁移学习思想同时利用在线难例挖掘训练网络以解决数据缺乏、训练难收敛的问题。实验结果表明,改进的Faster RCNN与传统的Faster RCNN网络相比,mAP(mean average precision)提高了2.1%,对小目标的识别有较好准确度。 展开更多
关键词 铁路异物侵限 小目标检测 特征融合 在线难例挖掘 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部