期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
基于在线自适应极限学习机选择性集成的网络入侵检测 被引量:4
1
作者 何捷舟 刘金平 +3 位作者 张五霞 肖文辉 唐朝晖 徐鹏飞 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第7期544-554,共11页
随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(onlin... 随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(online adaption extreme learning machine, OAELM)选择性学习的网络入侵检测方法(SEoOAELM-NID).首先,提出一种能自动设定最优隐含节点个数且具有在线增量学习功能的OAELM构建方法,采用Bagging策略快速训练出多个具有一定独立性的OAELM子学习器;然后,基于边缘距离最小化原则(margin distance minimization,MDM)对OAELM子学习器的集成增益进行计算;通过选择增益度高的部分OAELM进行选择性集成,获得泛化能力强、效率高的选择性集成学习器用于入侵检测.由于SEoOAELM-NID能自动设定ELM子学习器最优隐节点个数且能根据网络环境变化实现检测模型在线顺序更新,因而能有效适应各种复杂网络环境的入侵检测要求;选择部分最优的子学习器进行集成,保证了最终检测结果的准确性和实效性,同时利用在线数据不断更新检测器.在NSL-KDD数据集上的测试结果表明,相比基于单个学习器以及传统集成学习的网络入侵检测方法,SEoOAELM-NID无论对已知入侵类型还是未知入侵类型均能获得更高的检测率,且识别速度快. 展开更多
关键词 网络入侵检测 集成学习 在线自适应极限学习机
在线阅读 下载PDF
基于极限学习机的短期电力负荷在线预测 被引量:2
2
作者 杨凌 彭文英 +2 位作者 杨思怡 杜娟 程丽 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期637-644,共8页
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输... 为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强. 展开更多
关键词 短期电力负荷预测 极限学习 在线学习 正则化
在线阅读 下载PDF
基于在线学习的离散时间人机协作系统预定性能柔顺控制
3
作者 刘霞 王露 陈勇 《电子科技大学学报》 北大核心 2025年第1期52-61,共10页
为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时... 为了使人机协作系统中机器人能够准确地顺应人类行为,提出了一种基于在线学习的离散时间预定性能柔顺控制方法。该方法在外环采用在线顺序极限学习机算法估计人类行为,并将估计结果结合参考阻抗模型来重建参考轨迹。在内环建立了离散时间预定性能控制器用于跟踪重建后的参考轨迹,并利用时间延迟估计来获得机器人复杂的未知动力学模型。分析了闭环系统的瞬态和稳态性能,通过对比仿真验证了该方法的有效性。所提的离散时间控制方法可更好地满足数字计算机的工作原理,在减少计算和内存负担的基础上,使得机器人末端执行器的跟踪误差能够满足预设性能要求。此外,该方法无需机器人精确的数学模型,同时还能减轻人类操作机器人的力量负担,保证人机协作的柔顺性。 展开更多
关键词 柔顺控制 离散时间人协作系统 人类行为估计 在线顺序极限学习 预定性能
在线阅读 下载PDF
基于自适应在线极限学习机模型的预测方法 被引量:8
4
作者 徐勇 王东 张慧 《统计研究》 CSSCI 北大核心 2016年第7期103-109,共7页
本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并... 本文针对单个在线极限学习机输出不稳定的情况,提出一种自适应集成在线极限学习机算法(ASEOSELM)。算法首先初始化多个在线极限学习机模型,然后根据到达的每一批次数据的训练误差及其方差自适应地调整各个在线极限学习机的集成权重,并动态删除那些小于设定阈值的模型以提高算法的训练速度,最后选择准确度高、泛化能力好的模型用于集成预测。通过函数拟合、UCI数据集以及真实股价预测实验表明,文中提出的ASE-OSELM算法相比传统的OSELM、LS-SVM和BPNN算法具有更高的预测准确度和抗干扰能力。 展开更多
关键词 人工神经网络 自适应集成 选择性集成 在线极限学习
在线阅读 下载PDF
基于融合健康因子和集成极限学习机的锂离子电池SOH在线估计 被引量:2
5
作者 屈克庆 董浩 +3 位作者 毛玲 赵晋斌 杨建林 李芬 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期263-272,共10页
锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方... 锂离子电池健康状态(SOH)的在线估计对电池管理系统的安全稳定运行至关重要.为克服传统基于数据驱动的锂离子电池SOH估计方法训练时间长、计算量大、调试过程复杂的问题,提出一种基于融合健康因子和集成极限学习机的锂离子电池SOH估计方法.该方法通过dQ/dV和dT/dV曲线分析,筛选出与电池SOH相关性较高的数据区间进行多维健康特征提取,并对其进行主成分分析降维处理得到间接健康因子;利用极限学习机的随机学习算法建立间接健康因子和SOH之间的非线性映射关系.在此基础上,针对单一模型输出不稳定的特点,提出一种集成极限学习机模型,通过对估计结果设置可信度评价规则剔除单一极限学习机不可靠的输出,从而提高锂离子电池SOH的估计精度.使用NASA和牛津大学的锂离子电池老化数据集对该方法进行验证,结果表明该方法的平均绝对百分比误差小于1%,具有较高的准确性和可靠性. 展开更多
关键词 锂离子电池 健康因子 集成极限学习 健康状态在线估计
在线阅读 下载PDF
基于在线序贯极限学习机的温室温度预测方法及其自适应控制系统设计 被引量:5
6
作者 张立优 马珺 +2 位作者 贾华宇 王曦 张朝霞 《江苏农业科学》 2018年第14期226-230,共5页
针对现有的温室控制方法难以对温室系统做出精准预测和有效控制等问题,提出一种基于在线序贯极限学习机(online sequential extreme learning machine,简称OS-ELM)神经网络的温室温度预测及其自适应控制方法。该方法采用OS-ELM神经网络... 针对现有的温室控制方法难以对温室系统做出精准预测和有效控制等问题,提出一种基于在线序贯极限学习机(online sequential extreme learning machine,简称OS-ELM)神经网络的温室温度预测及其自适应控制方法。该方法采用OS-ELM神经网络构建温室系统的温度预测模型,并用于温室温度预测;将预测模型的输出作为模糊神经网络控制器(fuzzy neural network controller,简称FNNC)的理想输出参考量,结合FNNC的实际输出量,将FNNC输出误差作为遗传算法(genetic algorithm,简称GA)优化FNNC参数的目标函数,构成在线预测的模糊控制策略。在温室温度预测模型采用物理建模、Elman神经网络建模和OS-ELM神经网络建模方法下对温室温度控制进行试验,结果表明,基于OS-ELM的温室温度预测方法及其自适应控制系统具有较好的性能优势,可有效提高温室的预测和控制精度。 展开更多
关键词 在线序贯极限学习 模糊神经网络控制器 自适应控制 遗传算法 在线温室温度预测模型
在线阅读 下载PDF
PID补偿的完全在线序贯极限学习机控制器在输入扰动系统自适应控制中的应用
7
作者 张立优 马珺 贾华宇 《计算机应用》 CSCD 北大核心 2018年第4期1213-1217,共5页
针对输入受外界扰动的系统在实现自适应控制难的问题,提出一种比例-积分-微分(PID)补偿的完全在线序贯极限学习机(FOS-ELM)控制器设计方法。首先,建立系统的动态线性模型,采用FOS-ELM算法设计控制器并学习其参数;其次,计算系统的实际输... 针对输入受外界扰动的系统在实现自适应控制难的问题,提出一种比例-积分-微分(PID)补偿的完全在线序贯极限学习机(FOS-ELM)控制器设计方法。首先,建立系统的动态线性模型,采用FOS-ELM算法设计控制器并学习其参数;其次,计算系统的实际输出误差,结合系统的控制误差,设计所需补偿的PID增量参数;最后,对PID补偿的FOS-ELM控制器参数在线调整并用于系统控制。在发动机空气燃油比(AFR)控制系统模型上进行实验,实验结果表明上述方法在实现自适应控制的同时降低了系统扰动输入带来的干扰,提高了系统有效控制率,在正负干扰系数为0.2时,其有效控制率从不足53%提高到93%以上。同时该方法易于实现,具有很强的鲁棒性和实用价值。 展开更多
关键词 完全在线序贯极限学习 输入扰动 自适应控制 比例积分微分增量 控制误差
在线阅读 下载PDF
自适应混沌粒子群算法对极限学习机参数的优化 被引量:22
8
作者 陈晓青 陆慧娟 +1 位作者 郑文斌 严珂 《计算机应用》 CSCD 北大核心 2016年第11期3123-3126,共4页
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类... 针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 展开更多
关键词 自适应 极限学习 混沌粒子群 基因分类
在线阅读 下载PDF
改进在线贯序极限学习机在模式识别中的应用 被引量:13
9
作者 尹刚 张英堂 +1 位作者 李志宁 范红波 《计算机工程》 CAS CSCD 2012年第8期164-166,169,共4页
针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结... 针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结果表明,在线正则小波极限学习机克服过学习和局部最优等问题,能够实现快速在线学习,具有良好的泛化性和鲁棒性。 展开更多
关键词 在线贯序极限学习 小波分析 在线学习 模式识别 结构风险 泛化性能 鲁棒性
在线阅读 下载PDF
运用在线贯序极限学习机的故障诊断方法 被引量:10
10
作者 尹刚 张英堂 +1 位作者 李志宁 程利军 《振动.测试与诊断》 EI CSCD 北大核心 2013年第2期325-329,345,共5页
针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测... 针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测数据加入训练样本,作为下一次预测的已知信息,建立在线贯序极限学习机分类模型,从而在最大程度上提高故障诊断的精度。试验结果表明,在线贯序极限学习机在故障分类准确率与支持向量机相近的条件下,参数选择简单且学习速度提高近200倍。 展开更多
关键词 极限学习 在线神经网络 旋转 故障诊断 支持向量
在线阅读 下载PDF
基于Storm的在线序列极限学习机的气象预测模型 被引量:9
11
作者 欧阳建权 周勇 唐欢容 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1736-1743,共8页
为提高气象预测精度,实时应对频发的局域气象灾害,拥有更高的处理海量数据的效率,提出了一种基于Storm的在线序列的极限学习机气象预测模型.该模型首先初始化多个在线极限学习机,当新批次的数据不断到达时,模型能够在训练结果的基础上... 为提高气象预测精度,实时应对频发的局域气象灾害,拥有更高的处理海量数据的效率,提出了一种基于Storm的在线序列的极限学习机气象预测模型.该模型首先初始化多个在线极限学习机,当新批次的数据不断到达时,模型能够在训练结果的基础上继续学习新样本,并引入随机梯度下降法和误差权值调整方法,对新的预测结果进行误差反馈,实时更新误差权值参数,以提高模型预测准确率.另外,采用Storm流式处理框架对提出的算法模型进行并行化改进,以提高处理海量高维数据的能力.实验结果表明:该模型与基于Hadoop的并行极限学习机算法(parallel extreme learning machine,PELM)相比,具有更高的预测精度和优异的并行性能. 展开更多
关键词 STORM 极限学习 气象预测 在线序列 学习
在线阅读 下载PDF
基于流形正则化的在线半监督极限学习机 被引量:6
12
作者 王萍 王迪 冯伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1153-1158,1167,共7页
在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-... 在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-ELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSS-ELM(buffer)在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSS-ELM(buffer)的泛化能力与SS-ELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSS-ELM(buffer)不仅解决了内存问题,还在基本保持SS-ELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中. 展开更多
关键词 极限学习 半监督学习 在线学习 流形正则化
在线阅读 下载PDF
基于核函数的加权极限学习机污水处理在线故障诊断 被引量:9
13
作者 许玉格 邓文凯 陈立定 《化工学报》 EI CAS CSCD 北大核心 2016年第9期3817-3825,共9页
污水生化处理中的运行故障会引起出水水质不达标、运行费用增高和环境二次污染等严重问题,需要及时准确地对运行故障进行诊断。考虑到污水处理过程运行状态数据的不平衡性造成故障诊断准确率下降,提出了一种基于核函数的加权极限学习机... 污水生化处理中的运行故障会引起出水水质不达标、运行费用增高和环境二次污染等严重问题,需要及时准确地对运行故障进行诊断。考虑到污水处理过程运行状态数据的不平衡性造成故障诊断准确率下降,提出了一种基于核函数的加权极限学习机污水处理过程实时在线故障诊断方法。该方法以极限学习机为基础,采用加权的方式处理数据的不平衡特性,通过核函数的非线性映射来提高数据线性可分的程度。仿真实验证明,本文建立的污水处理在线故障诊断模型在线测试精度高,泛化性能好,模型在线更新速度快,能够比较好地满足准确性和实时性,实现对污水处理过程的在线故障诊断。 展开更多
关键词 加权极限学习 核函数 在线建模 污水处理 故障诊断 仿真实验
在线阅读 下载PDF
在线极限学习机在岩爆预测中的应用 被引量:8
14
作者 兰明 刘志祥 冯凡 《安全与环境学报》 CAS CSCD 北大核心 2014年第2期90-93,共4页
为有效预测地下工程岩爆的发生及烈度,结合地下工程岩爆的特点,分析岩爆影响因素及相关判别依据,选取围岩最大切向应力σ与岩石抗压强度σc之比σ/σc、岩石抗压强度σc与岩石抗拉强度σt之比σc/σt以及弹性能量指数Wet为判别因子... 为有效预测地下工程岩爆的发生及烈度,结合地下工程岩爆的特点,分析岩爆影响因素及相关判别依据,选取围岩最大切向应力σ与岩石抗压强度σc之比σ/σc、岩石抗压强度σc与岩石抗拉强度σt之比σc/σt以及弹性能量指数Wet为判别因子,引入在线极限学习机理论,建立了岩爆预测的OS-ELM判别模型。以搜集到的国内外15组工程岩爆数据进行训练建模,训练完成后将样本数据做输出预测,得到模型的预测精度达97.98%,并与SVM、BP模型进行对比分析,结果表明,OS-ELM模型精度优于SVM和BP模型。利用该模型对国内两处隧道岩爆情况进行预测,结果与实际情况基本相符。研究表明,OSELM判别模型在岩爆烈度分级上具有良好的适用性和有效性。 展开更多
关键词 安全工程 地下工程 在线极限学习 岩爆分级 预测
在线阅读 下载PDF
基于北方苍鹰优化核极限学习机的玉米品种鉴别研究 被引量:3
15
作者 倪金 索丽敏 +1 位作者 刘海龙 赵蕊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1584-1590,共7页
玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该... 玉米作为我国种植最为广泛的农作物,其产量对于我国粮食安全具有重大意义,由于不同品种具有不同的特性,根据种植条件科学选种能够很大限度上提高产量并且降低生产成本,但不同玉米种子外观极其相似,导致科学选种工作产生了一定难度。该研究基于近红外光谱技术结合核极限学习机(KELM)针对玉米品种分类问题构建鉴别模型,利用甜糯黄玉米、甜妃、昌甜、金色超人、香甜5号五种玉米种子,每种取(13±0.5)g作为一份样品,共计126个样品作为研究对象,对采集的近红外光谱数据进行标准正态变量变换(SNV)处理后采用竞争性自适应重加权采样法(CARS)对数据集进行降维。按照5∶1的比例将样本随机分为训练集和测试集,探讨北方苍鹰优化算法(NGO)对KELM模型性能的影响。分别使用NGO算法、粒子群算法(PSO)和灰狼算法(GWO)对KELM模型的两个重要参正则化参数C和高斯核函数γ进行寻优,选择五折交叉验证识别准确率最高时对应的C和γ作为建模参数,建立KELM分类模型。将各算法寻优后建立的KELM模型性能进行对比。实验发现,通过NGO算法寻优后建立的KELM模型性能高于其他两种算法优化的KELM模型,测试集识别准确率可达100%。在CARS降维的基础上分别建立CARS-NGO-KELM、CARS-PSO-KELM和CARS-GWO-KELM模型,结果表明,在面对降维后的数据时NGO算法仍能表现较好的性能,其测试集准确率和F 1值均达到了100%。为了验证样本数量对模型的影响,使用各品种样品数量同步后的共计90个样品重新训练KELM模型。结果表明,在同步各类样品数量后,各个模型在训练集和测试集上的表现均有提升。该研究在近红外光谱的基础上引入多种优化算法构建核极限学习机模型并将识别准确率提升至100%,实现了对玉米种子快速、无损、准确的品种鉴别,研究结果为玉米品种快速鉴别提供了一种新方法,同时也对监管部门具有一定的指导意义。 展开更多
关键词 近红外光谱 玉米 北方苍鹰 竞争性自适应加权采样 极限学习
在线阅读 下载PDF
一种基于在线序贯极限学习机的大型舰船甲板态势预测方法 被引量:4
16
作者 刘锡祥 宋清 +2 位作者 司马健 黄永江 杨燕 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期269-274,共6页
在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、... 在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、随机性和时变性。针对上述特性,引入具有信息实时更新功能的在线序贯极限学习机(OS-ELM)方法对甲板运动态势进行预测。该方法通过实时更新参与模型解算的样本数据,具有计算量小、学习映射能力强的优点。针对OS-ELM中存在的隐含层节点个数选择,以及甲板态势预测中出现的样本个数、历史数据长度等参数选择问题,引入遗传算法(GA)进行寻优。基于模拟甲板摇荡数据的仿真表明,该预测方法可以实时跟踪甲板运动的实时性变化,并对甲板运动态势进行预测。 展开更多
关键词 甲板态势预测 在线序贯极限学习 信息更新 遗传算法
在线阅读 下载PDF
在线增量极限学习机及其性能研究 被引量:3
17
作者 马致远 罗光春 +1 位作者 秦科 汪楠 《计算机应用研究》 CSCD 北大核心 2018年第12期3533-3537,共5页
针对在线学习中极限学习机需要事先确定模型结构的问题,提出了兼顾数据增量和结构变化的在线极限学习机算法。算法以在线序列化极限学习机为基础,通过误差变化判断是否新增节点,并利用分块矩阵的广义逆矩阵对新增节点后的模型进行更新,... 针对在线学习中极限学习机需要事先确定模型结构的问题,提出了兼顾数据增量和结构变化的在线极限学习机算法。算法以在线序列化极限学习机为基础,通过误差变化判断是否新增节点,并利用分块矩阵的广义逆矩阵对新增节点后的模型进行更新,使模型保持较高的正确率。通过在不同类型和大小的数据集上的实验表明,所提算法相较于经典极限学习机及其在线和增量学习版本都具有较好的分类和回归准确率,能够适应不同类型的数据分析任务。 展开更多
关键词 极限学习 增量学习 在线学习 广义逆 在线增量极限学习
在线阅读 下载PDF
基于自适应差分进化算法优化极限学习机的球磨机料位测量 被引量:6
18
作者 王芳 续欣莹 阎高伟 《仪表技术与传感器》 CSCD 北大核心 2015年第6期143-145,共3页
极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵... 极限学习机在实际应用中具有学习速度快、训练误差小的优点,但其稳定性与泛化能力却较差。针对其缺点,将自适应差分进化算法引入极限学习机对其改进,利用自适应差分进化算法的全局寻优能力,求取训练误差较小时极限学习机的输入权值矩阵以及隐含层偏置矩阵,从而优化极限学习机。将优化后的极限学习机应用于球磨机料位测量,实验结果表明,优化后的极限学习机与传统极限学习机相比具有较高的测量精度和较好的稳定性。 展开更多
关键词 自适应差分进化算法 极限学习 测试误差 球磨料位测量
在线阅读 下载PDF
基于选择性更新的在线核极限学习机建模 被引量:6
19
作者 孙朝江 汤健 +1 位作者 魏忠军 赵立杰 《控制工程》 CSCD 北大核心 2013年第4期659-662,共4页
针对每样本递推更新的在线建模方法计算消耗大、常用的人工智能建模方法学习速度慢的缺点,为能够对软测量模型进行有效更新和提高在线模型的学习速度,提出了一种基于选择性更新的在线核极限学习机(KELM)建模方法。该方法首先采用近似线... 针对每样本递推更新的在线建模方法计算消耗大、常用的人工智能建模方法学习速度慢的缺点,为能够对软测量模型进行有效更新和提高在线模型的学习速度,提出了一种基于选择性更新的在线核极限学习机(KELM)建模方法。该方法首先采用近似线性依靠(ALD)条件判别新样本与建模样本间的线性独立依靠程度,选择满足设定条件、含有足够新信息的样本对软测量模型进行更新,降低了模型在线学习次数;然后选择学习速度快、泛化性强的KELM方法建立软测量模型,有效地避免了极限学习机(ELM)模型固有的随机性和支持向量机(SVM)模型求解的复杂性;最后将ALD条件和KELM算法有效结合,提高了在线软测量模型的学习速度和预测性能。通过合成数据的仿真实验结果验证了所提方法的有效性。 展开更多
关键词 选择性更新 近似线性依靠(ALD) 极限学习(KELM) 在线建模
在线阅读 下载PDF
一种基于簇的极限学习机的在线学习算法 被引量:4
20
作者 张敏 曾新苗 马长春 《计算机工程与应用》 CSCD 2014年第11期188-191,266,共5页
针对传统的批量学习算法学习速度慢、对空间需求量高的缺点,提出了一种基于簇的极限学习机的在线学习算法。该算法将分簇的理念融入到极限学习机中,并结合极限学习机,提出了一种基于样本类别和样本输出的分簇标准;同时提出了一种加权的M... 针对传统的批量学习算法学习速度慢、对空间需求量高的缺点,提出了一种基于簇的极限学习机的在线学习算法。该算法将分簇的理念融入到极限学习机中,并结合极限学习机,提出了一种基于样本类别和样本输出的分簇标准;同时提出了一种加权的Moore-Penrose算法求隐层节点与输出节点的连接权重。实验结果表明,该算法具有学习能力好、拟合度高、泛化性能好等优点。 展开更多
关键词 极限学习 在线学习
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部