期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于稀疏表示和粒子滤波的在线目标跟踪算法 被引量:5
1
作者 王海罗 汪渤 +2 位作者 高志峰 周志强 李笋 《北京理工大学学报》 EI CAS CSCD 北大核心 2016年第6期635-640,共6页
针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向... 针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向量和琐碎模板进行稀疏表示,进而利用L1范数最小化方法进行最优求解.为保证在遮挡的情况下目标跟踪的精度,对目标遮挡部分和非遮挡部分进行拆分建模,并利用PCA子空间增量学习的方式不断更新目标跟踪模型.通过对具有挑战性的跟踪视频进行定性和定量分析,实验证明该方法在跟踪精度上要优于传统的跟踪方法. 展开更多
关键词 稀疏表示 PCA增量学习 PHOG特征 在线目标跟踪
在线阅读 下载PDF
基于特征分组的在线目标跟踪算法 被引量:2
2
作者 姜明新 王洪玉 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第5期755-759,共5页
在线目标跟踪是计算机视觉领域的一个具有挑战性的问题.提出了一种基于特征分组的在线目标跟踪算法.首先,利用像素点在多帧的方差对模板库中的目标模板进行特征分组.然后,利用主要特征图像和次要特征图像学习投影矩阵P,对样本进行投影.... 在线目标跟踪是计算机视觉领域的一个具有挑战性的问题.提出了一种基于特征分组的在线目标跟踪算法.首先,利用像素点在多帧的方差对模板库中的目标模板进行特征分组.然后,利用主要特征图像和次要特征图像学习投影矩阵P,对样本进行投影.最后,利用最小误差法得出当前帧的跟踪结果.与其他典型算法相比,该算法对目标的异常变化具有很强的鲁棒性. 展开更多
关键词 在线目标跟踪 线性子空间学习 特征分组 模板更新
在线阅读 下载PDF
基于生物启发C2特征的在线目标跟踪算法
3
作者 邢晓芬 裘索 +1 位作者 郭锴凌 徐向民 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期63-68,75,共7页
现有的在线跟踪算法在应对目标复杂形变时易出现跟踪偏差.文中通过寻找鲁棒的特征去刻画目标外观来解决这一问题,即模拟人眼视皮层腹侧通路感知机制,引入具有位置尺度不变性、复杂形状选择特性的C2特征,建立一个基于认知碎片集进行C2特... 现有的在线跟踪算法在应对目标复杂形变时易出现跟踪偏差.文中通过寻找鲁棒的特征去刻画目标外观来解决这一问题,即模拟人眼视皮层腹侧通路感知机制,引入具有位置尺度不变性、复杂形状选择特性的C2特征,建立一个基于认知碎片集进行C2特征识别的在线目标跟踪模型,并根据认知碎片在目标识别中所起的作用对其重要性进行评估,依据评估结果实现认知碎片的在线淘汰与更新,同时引入在线目标/背景分类器,对新加入认知碎片记忆池的碎片进行筛选,解决了跟踪到的目标区域中的背景部分参与模型更新可能造成的误差累积问题.仿真实验结果表明:该算法在应对目标复杂形变和严重遮挡时,具有一定的鲁棒性与有效性. 展开更多
关键词 生物启发特征 C2特征 在线目标跟踪 认知碎片
在线阅读 下载PDF
基于注意力和多级线索关联的多目标跟踪网络 被引量:1
4
作者 黄晨 童维勤 +3 位作者 刘雨 陈一民 邹一波 顾贇鸣 《计算机应用与软件》 北大核心 2024年第12期161-166,181,共7页
针对多目标跟踪(Multi-Object Tracking,MOT)任务中因目标间的相互遮挡导致目标跟踪失败和轨迹关联错误等问题,提出一种新的基于注意力机制和多级线索关联策略的多目标跟踪网络。生成目标可见性图并将其转化为空间注意力图来解决多个目... 针对多目标跟踪(Multi-Object Tracking,MOT)任务中因目标间的相互遮挡导致目标跟踪失败和轨迹关联错误等问题,提出一种新的基于注意力机制和多级线索关联策略的多目标跟踪网络。生成目标可见性图并将其转化为空间注意力图来解决多个目标之间的遮挡问题;在特定目标对象分支网络中,使用通道注意力提高特征鲁棒性;提出结合目标对象的外观、运动以及交互三种线索的多级线索关联策略来匹配当前目标的正确轨迹。在基准数据集MOT16和MOT17上的实验结果表明,与现有方法相比,所提出的方法在多个评价指标上能获得更好的结果。 展开更多
关键词 在线目标跟踪 注意力机制 多级线索关联
在线阅读 下载PDF
基于视觉字典的在线多示例目标跟踪 被引量:2
5
作者 吴京辉 唐林波 +2 位作者 赵保军 邓宸伟 李嘉桐 《系统工程与电子技术》 EI CSCD 北大核心 2015年第2期428-435,共8页
在线多示例目标跟踪算法无法判别目标丢失以及无法适应目标尺度的变化。提出了一种基于视觉字典的在线多示例目标跟踪算法。算法将视觉字典和多示例跟踪分别作为检测器和跟踪器,利用互反馈技术提高跟踪性能。跟踪器完成目标的跟踪并为... 在线多示例目标跟踪算法无法判别目标丢失以及无法适应目标尺度的变化。提出了一种基于视觉字典的在线多示例目标跟踪算法。算法将视觉字典和多示例跟踪分别作为检测器和跟踪器,利用互反馈技术提高跟踪性能。跟踪器完成目标的跟踪并为视觉字典的构建和更新提供训练样本;检测器则对跟踪器的结果(候选样本)进行判定,目标丢失时,暂停跟踪并重新检测目标,目标未丢失时,利用Ransac算法获得目标的尺度变换系数并在新尺度下更新跟踪器。为了提高目标丢失判别的准确性,提出了一种局部随机抽样的直方图相似性度量技术,采用局部划分思想和Noisy-NR模型计算候选样本与训练样本特征直方图的相似性,减少了传统直方图匹配由于受目标局部遮挡影响造成的误判。实验结果表明,该算法能够适应目标的尺度变化,检测目标的丢失,提高了跟踪稳定性。 展开更多
关键词 在线多示例目标跟踪 视觉字典 尺度自适应 目标丢失判别
在线阅读 下载PDF
深度在线多目标跟踪算法综述 被引量:6
6
作者 刘文强 裘杭萍 +5 位作者 李航 杨利 李阳 苗壮 李一 赵昕昕 《计算机科学与探索》 CSCD 北大核心 2022年第12期2718-2733,共16页
视频多目标跟踪是计算机视觉领域的一个关键任务,在工业、商业及军事领域有着广泛的应用前景。目前,深度学习的快速发展为解决多目标跟踪问题提供了多种方案。然而,目标外观发生突变、目标区域被严重遮挡以及目标的消失和出现等挑战性... 视频多目标跟踪是计算机视觉领域的一个关键任务,在工业、商业及军事领域有着广泛的应用前景。目前,深度学习的快速发展为解决多目标跟踪问题提供了多种方案。然而,目标外观发生突变、目标区域被严重遮挡以及目标的消失和出现等挑战性的问题还未完全解决。重点关注基于深度学习的在线多目标跟踪算法,总结了该领域的最新进展,按照目标特征预测、表观特征提取和数据关联三个重要模块,依据基于检测跟踪(DBT)和联合检测跟踪(JDT)两个经典框架将深度在线多目标跟踪算法分为了六个小类,讨论不同类别算法的原理和优缺点。其中,DBT算法的多阶段设计结构清晰,容易优化,但多阶段的训练可能导致次优解;JDT算法融合检测和跟踪的子模块达到了更快的推理速度,但存在各模块协同训练的问题。目前,多目标跟踪开始关注目标的长期特征提取、遮挡目标处理、关联策略改进以及端到端框架的设计。最后,结合已有算法,总结了深度在线多目标跟踪亟待解决的问题并展望未来可能的研究方向。 展开更多
关键词 在线目标跟踪 深度学习 特征提取 数据关联
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部