为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立...为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。展开更多
针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算...针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算法能够适应时间序列的时变性并提高执行效率,同时可利用不同的核函数性能,通过组合模型提高预测精度。采用实际齿轮箱铁谱数据对预测算法进行验证,结果表明,基于组合核函数的OSVR预测算法具有很好的预测精度和适应性,能有效预测起重机齿轮箱的磨损故障,且相比于单一OSVR算法和灰色神经网络组合算法有更高的效率和预测精度。展开更多
文摘为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。
文摘针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算法能够适应时间序列的时变性并提高执行效率,同时可利用不同的核函数性能,通过组合模型提高预测精度。采用实际齿轮箱铁谱数据对预测算法进行验证,结果表明,基于组合核函数的OSVR预测算法具有很好的预测精度和适应性,能有效预测起重机齿轮箱的磨损故障,且相比于单一OSVR算法和灰色神经网络组合算法有更高的效率和预测精度。