期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于在线字典学习和脉冲耦合神经网络的脑图像融合 被引量:1
1
作者 宗静静 邱天爽 《中国生物医学工程学报》 CAS CSCD 北大核心 2015年第5期540-547,共8页
医学图像融合是医学影像和放射医学等领域的研究热点之一,广受医学界和工程界重视。提出一种基于在线字典学习(ODL)和脉冲耦合神经网络(PCNN)的脑部CT和MR图像融合新算法。首先,利用滑动窗技术将源图像分块,使用ODL算法和最小角回归算法... 医学图像融合是医学影像和放射医学等领域的研究热点之一,广受医学界和工程界重视。提出一种基于在线字典学习(ODL)和脉冲耦合神经网络(PCNN)的脑部CT和MR图像融合新算法。首先,利用滑动窗技术将源图像分块,使用ODL算法和最小角回归算法(LARS)得到各图像块对应列向量的稀疏编码;其次,将稀疏编码作为脉冲耦合神经网络的外部输入刺激信号进行迭代处理,根据点火次数确定融合系数;最后,根据融合系数和学习字典重构融合图像。基于哈佛医学院的10组脑部CT和MR数据,将所提出算法同基于KSVD的融合算法、基于ODL的融合算法、基于NSCT的融合算法比较。实验结果显示:综合考虑主观视觉效果和客观评价指标,该算法性能整体优于其他算法,客观参数指标BSSIM、MI、Piella、SF、STD、QAB/F的均值分别为0.751 2、3.769 6、0.697 1、29.526 7、90.090 6、0.570 7,可以提供丰富的信息来辅助医生分析病变体,提高临床医疗诊断的准确性和治疗规划的科学性。 展开更多
关键词 图像融合 稀疏表示 脉冲耦合神经网络(PCNN) 在线字典学习(odl) 最小角回归算法(LARS)
在线阅读 下载PDF
基于在线字典学习的人脸超分辨率重建 被引量:2
2
作者 刘芳华 阮若林 +1 位作者 王建峰 倪浩 《现代电子技术》 北大核心 2017年第13期57-61,共5页
针对基于学习的人脸超分辨率算法噪点、伪影较多,且噪声鲁棒性较差的问题,提出一种基于在线字典学习的人脸超分辨率重建算法。以人脸图集作为训练图库,运用在线字典学习方法提高字典训练的精度。独立调整字典学习阶段的正则化参数λt和... 针对基于学习的人脸超分辨率算法噪点、伪影较多,且噪声鲁棒性较差的问题,提出一种基于在线字典学习的人脸超分辨率重建算法。以人脸图集作为训练图库,运用在线字典学习方法提高字典训练的精度。独立调整字典学习阶段的正则化参数λt和求解重建稀疏系数阶段的λr,以获取最优的超完备字典和稀疏系数用于图像重建。实验结果表明,目标图像峰值信噪比比同一类型的稀疏编码超分法平均提高了0.85 d B,结构相似性增加了0.013 3,有效地抑制了噪点和伪影。在含噪人脸图像应用中,噪声水平提高时,峰值信噪比下降相对较平缓,提升人脸超分效果的同时改善了算法的噪声鲁棒性。 展开更多
关键词 在线字典学习 超分辨率重建 含噪人脸图像 稀疏编码
在线阅读 下载PDF
在线字典学习形变模型的疲劳状态识别方法
3
作者 王辉 童丽峰 +2 位作者 于立君 贲浩然 游江 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第6期892-897,共6页
针对现有驾驶疲劳状态识别算法中存在疲劳特征维数高、识别效率低下、计算量大等问题,本文提出一种基于在线字典学习形变模型的疲劳状态识别方法。采用红外疲劳人脸图像中关键变形区域LBP特征构建人脸形变模型;将在线字典学习算法引入... 针对现有驾驶疲劳状态识别算法中存在疲劳特征维数高、识别效率低下、计算量大等问题,本文提出一种基于在线字典学习形变模型的疲劳状态识别方法。采用红外疲劳人脸图像中关键变形区域LBP特征构建人脸形变模型;将在线字典学习算法引入到形变模型中,采用过完备基函数矩阵代替训练样本整体对待测样本进行线性表示,利用其组合系数的稀疏性进行人脸疲劳状态识别;采用时间窗结合贝叶斯方法对识别算法进行优化。实验结果表明,与传统的识别方法相比,本文所提算法可以降低系统的运算量,提高疲劳状态识别的鲁棒性和准确率,在实际驾驶环境中能够取得良好的识别效果。 展开更多
关键词 疲劳状态识别 变形区域 LBP特征 形变模型 在线字典学习 过完备基函数矩阵 时间窗 贝叶斯方法
在线阅读 下载PDF
基于在线字典学习的医学图像特征提取与融合 被引量:3
4
作者 吴双 邱天爽 高珊 《中国生物医学工程学报》 CAS CSCD 北大核心 2014年第3期283-288,共6页
提出一种基于在线字典学习(ODL)的医学图像特征提取与融合的新算法。首先,采用大小为8像素×8像素的滑动窗处理源图像,得到联合矩阵;通过ODL算法得到该联合矩阵的冗余字典,并利用最小角回归算法(LARS)计算该联合矩阵的稀疏编码;将... 提出一种基于在线字典学习(ODL)的医学图像特征提取与融合的新算法。首先,采用大小为8像素×8像素的滑动窗处理源图像,得到联合矩阵;通过ODL算法得到该联合矩阵的冗余字典,并利用最小角回归算法(LARS)计算该联合矩阵的稀疏编码;将稀疏编码列向量的1范数作为稀疏编码的活动级测量准则,然后根据活动级最大准则融合稀疏编码;最后根据融合后的稀疏编码和冗余字典重构融合图像。实验图像为20位患者的已配准脑部CT和MR图像,采用5种性能指标评价融合图像的质量,同两种流行的融合算法比较。结果显示,所提出算法的各项客观指标均值最优,Piella指数、QAB/F指数、MIAB/F指数、BSSIM指数和空间频率的均值分别为0.800 4、0.552 4、3.630 2、0.726 9和31.941 3,融合图像对比度、清晰度高,病灶的边缘清晰,运行速度较快,可以辅助医生诊断和临床治疗。 展开更多
关键词 图像融合 在线字典学习算法(odl) 最小角回归算法(LARS)
在线阅读 下载PDF
利用改进的在线字典学习估计时变子波 被引量:5
5
作者 孔德辉 彭真明 《石油地球物理勘探》 EI CSCD 北大核心 2016年第5期901-908,835,共8页
为了获得符合实际的混合相位子波,提出了一种基于在线字典学习的时变子波估计方法。将时变子波估计转化为在线字典学习问题,通过过完备字典的在线学习实现冗余字典的自适应更新。字典中的每个原子代表子波的一个分量,通过原子的线性组... 为了获得符合实际的混合相位子波,提出了一种基于在线字典学习的时变子波估计方法。将时变子波估计转化为在线字典学习问题,通过过完备字典的在线学习实现冗余字典的自适应更新。字典中的每个原子代表子波的一个分量,通过原子的线性组合实现对时变子波的有效逼近。在线字典学习可以灵活地利用训练数据,改进字典中的原子,提升字典的自适应特性。同时,根据地震数据的特点,对训练数据与稀疏表示的残差项进行滤波处理,改进了在线字典学习方法,降低了对噪声的敏感性。无噪声和含噪声合成数据的实验结果证明了本文方法的有效性,而且对噪声具有一定的鲁棒性。实际子波估计结果以及Wiener滤波的反褶积剖面和频谱分析表明,本文方法得到的结果并未使噪声能量增强,但频带得到拓宽,从而为时变子波估计提供了新思路。 展开更多
关键词 在线字典学习 稀疏表示 训练集 滤波 反褶积 时变子波估计
在线阅读 下载PDF
基于在线字典学习算法的地震数据去噪应用 被引量:5
6
作者 王量 买皓 李勇 《断块油气田》 CAS CSCD 北大核心 2019年第2期177-180,共4页
为了解决常规去噪方法不能根据地震数据自适应构造基函数,去噪效果无法达到最佳的问题,引入基于稀疏表示的在线字典学习(ODL,online dictionary learning)算法对地震数据进行去噪处理。ODL算法能够快速学习,得到与地震数据高度匹配的字... 为了解决常规去噪方法不能根据地震数据自适应构造基函数,去噪效果无法达到最佳的问题,引入基于稀疏表示的在线字典学习(ODL,online dictionary learning)算法对地震数据进行去噪处理。ODL算法能够快速学习,得到与地震数据高度匹配的字典,该自适应字典代替了传统域变换方法中的固定基函数。同时,结合稀疏表示的思想,使用最小角回归(LARS)算法求解出字典的最优稀疏表示系数,将字典与稀疏表示系数组合,从而得到去噪后的地震数据。理论模型和实际地震数据的去噪应用表明:相比较为先进的curvelet变换方法,ODL算法可以更有效地去除随机噪声、相干噪声,同时很好地保留了数据特征。因此,ODL算法对于地震噪声压制有实际指导意义。 展开更多
关键词 去噪 自适应 稀疏表示 在线字典学习 字典
在线阅读 下载PDF
基于在线字典学习的自适应医学图像融合算法 被引量:1
7
作者 殷鑫华 戴文战 李俊峰 《浙江理工大学学报(自然科学版)》 2017年第2期246-254,共9页
针对医学图像复杂多样的特点,提出一种基于在线字典学习的自适应医学图像融合算法。该算法首先利用在线字典学习理论训练源图像的过完备字典;然后利用正交匹配追踪算法对源图像进行稀疏分解得到稀疏编码,根据源图像之间稀疏编码的能量... 针对医学图像复杂多样的特点,提出一种基于在线字典学习的自适应医学图像融合算法。该算法首先利用在线字典学习理论训练源图像的过完备字典;然后利用正交匹配追踪算法对源图像进行稀疏分解得到稀疏编码,根据源图像之间稀疏编码的能量差异程度和梯度差异程度自适应调整融合准则,若能量差异程度大于梯度差异程度,则根据能量取大准则融合稀疏编码,反之,根据梯度取大准则融合稀疏编码;最后将融合后的稀疏编码与过完备字典进行重构得到融合图像。实验结果表明:与多尺度几何分析、K奇异值分解等图像融合算法比较,该算法融合的图像客观评价指标信息熵、边缘评价因子均有所提高,主观上纹理清晰、对比度高,能够很好地保留源图像的边缘信息。 展开更多
关键词 医学图像融合 在线字典学习 正交匹配追踪 梯度差异 能量差异
在线阅读 下载PDF
基于在线多字典学习的矿井图像超分辨率重建方法 被引量:10
8
作者 汪海涛 于文洁 张光磊 《工矿自动化》 北大核心 2020年第9期74-78,共5页
针对基于字典学习的方法在处理含有噪声且环境复杂的矿井图像时重建效果不佳的问题,提出了一种基于在线多字典学习的矿井图像超分辨率重建方法。该方法利用K-means聚类算法将图像训练集划分为多类图像,并针对不同类图像训练多组高低分... 针对基于字典学习的方法在处理含有噪声且环境复杂的矿井图像时重建效果不佳的问题,提出了一种基于在线多字典学习的矿井图像超分辨率重建方法。该方法利用K-means聚类算法将图像训练集划分为多类图像,并针对不同类图像训练多组高低分辨率字典,提高字典对环境复杂图像的特征表示能力;根据图像非局部自相似性,引入非局部约束项进一步约束稀疏系数的解空间,并通过在线字典学习对多字典学习阶段的字典进行优化,提高稀疏系数求解的准确性,从而提高图像重建过程的抗噪声干扰能力。实验结果表明,该方法能够有效提高重建图像质量,抑制噪声引起的图像块效应和边缘锯齿效应,增强图像细节,具有更好的视觉效果。 展开更多
关键词 矿井图像 超分辨率重建 在线字典学习 字典学习 非局部自相似
在线阅读 下载PDF
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:6
9
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏核极限学习 样本稀疏 瞬时信息测量 稀疏核函数字典 减样学习 在线诊断
在线阅读 下载PDF
联合稀疏表示的医学图像融合及同步去噪 被引量:6
10
作者 宗静静 邱天爽 郭冬梅 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第2期133-140,共8页
将多模态医学图像的互补信息有机地融合在一起,可为临床诊断和辅助治疗提供丰富信息和有效帮助。基于联合稀疏模型,提出一种联合稀疏表示的医学图像融合算法,当图像被噪声污染时,该算法在融合的同时兼有去噪功能。首先,将配准的源图像... 将多模态医学图像的互补信息有机地融合在一起,可为临床诊断和辅助治疗提供丰富信息和有效帮助。基于联合稀疏模型,提出一种联合稀疏表示的医学图像融合算法,当图像被噪声污染时,该算法在融合的同时兼有去噪功能。首先,将配准的源图像编纂成列向量并组成联合矩阵,通过在线字典学习算法(ODL)得到该矩阵的超完备字典;其次,利用该字典得到联合稀疏模型下的联合字典,之后利用最小角回归算法(LARS)计算基于联合字典的公共稀疏系数和各图像的独特稀疏系数,并根据"选择最大化"融合规则得到融合图像的稀疏系数;最后,根据融合系数和超完备字典重构融合图像。将该算法与3种经典算法比较,结果显示其主观上亮度失真和对比度失真较小,边缘纹理清晰,客观参数指标MI、QAB/F在无噪声干扰和有噪声干扰时的统计均值分别为:3.992 3、2.896 4、2.505 5和0.658、0.552 4、0.439 6,可以为临床诊断和辅助治疗提供有效帮助。 展开更多
关键词 联合稀疏表示 在线字典学习 医学图像融合 图像去噪
在线阅读 下载PDF
基于稀疏编码的鲁棒型人脸超分辨率重建 被引量:3
11
作者 刘芳华 阮若林 +1 位作者 倪浩 王建峰 《电讯技术》 北大核心 2017年第8期957-962,共6页
为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图... 为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建。实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 d B和0.018 7。同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性。 展开更多
关键词 人脸图像 超分辨率重建 稀疏编码 在线字典学习
在线阅读 下载PDF
基于Di-LSTM算法的注意力缺陷多动障碍症分类 被引量:2
12
作者 张淼 陈宏涛 《电子设计工程》 2022年第4期52-57,共6页
对注意力缺陷多动障碍症(ADHD)受试者的准确识别一直是神经科学研究和临床诊断的挑战。基于更好的区分正常人和患者这一目的,文中采用了一种基于字典学习和长短期记忆(Long Short Term Memory,LSTM)网络的Di-LSTM算法,通过利用快速独立... 对注意力缺陷多动障碍症(ADHD)受试者的准确识别一直是神经科学研究和临床诊断的挑战。基于更好的区分正常人和患者这一目的,文中采用了一种基于字典学习和长短期记忆(Long Short Term Memory,LSTM)网络的Di-LSTM算法,通过利用快速独立成分分析(Fast Independent Component Analysis,FastICA)初始化的在线字典学习,获得相应时间序列并且结合LSTM进行分类实验,实验结果表明,所提方法分类准确率达到了79.01%,特异性为88.9%,灵敏度为62.7%,说明该方法对于识别ADHD患者有所帮助,具有较好的应用前景。 展开更多
关键词 ADHD rs-fMRI 在线字典学习 FASTICA 长短期记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部