期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于期望-超额出行时间的道路系统最优均衡模型 被引量:1
1
作者 秦娟 蒲云 吕彪 《西南交通大学学报》 EI CSCD 北大核心 2014年第2期358-366,共9页
为研究随机事件扰动下出行者的择路行为对交通分配的影响,同时考虑供需条件的随机变化,以期望-超额出行时间为出行者择路依据,利用边际成本收费原理,推导了边际成本收费值计算公式,建立用等价变分不等式表示的系统最优交通分配模型,并... 为研究随机事件扰动下出行者的择路行为对交通分配的影响,同时考虑供需条件的随机变化,以期望-超额出行时间为出行者择路依据,利用边际成本收费原理,推导了边际成本收费值计算公式,建立用等价变分不等式表示的系统最优交通分配模型,并利用自适应投影收缩算法进行求解.算例表明:当OD需求系数为1.0、路段能力退化系数为0.5时,路径1边际成本收费值分别比使用期望出行时间和出行时间预算为择路依据时增加了11.27%和3.58%;当出行时间可靠度为0.9时,路径1边际成本收费值分别比使用期望出行时间和出行时间预算作为择路依据时增加了20.22%和4.30%. 展开更多
关键词 交通工程 系统最优均衡 不等式 投影收缩算法 期望-超额出行时间
在线阅读 下载PDF
一种主动半监督大规模网络结构发现算法
2
作者 柴变芳 曹欣雨 +1 位作者 魏春丽 王建岭 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2020年第3期243-250,共8页
在线变分期望最大(online variational expectation maximization,onlineVEM)算法可快速发现大规模网络的聚类模式,但在网络结构复杂时算法的处理结果稳定性和准确性欠佳.为更快更准地识别其聚类模式,提出一种主动半监督在线变分期望最... 在线变分期望最大(online variational expectation maximization,onlineVEM)算法可快速发现大规模网络的聚类模式,但在网络结构复杂时算法的处理结果稳定性和准确性欠佳.为更快更准地识别其聚类模式,提出一种主动半监督在线变分期望最大(active semi-supervised onlineVEM,ASonlineVEM)算法.算法首先自动选择代表节点,确定类的个数,并基于代表节点初始化模型;然后迭代执行3个任务:运行在线算法onlineVEM、主动选节点及模型更新,直至算法达到准确率的设定阈值或收敛.在不同结构的人工网络和真实网络上的实验结果表明,ASonlineVEM算法的准确性和效率均优于同类算法.ASonlineVEM算法利用主动选择的节点先验信息提高了网络聚类模式发现的稳定性及准确性,提高了在线算法的运行效率. 展开更多
关键词 计算机应用 大规模网络 半监督聚类 主动学习 在线变分期望最大算法 成对约束
在线阅读 下载PDF
基于概率模型的大规模网络结构发现方法 被引量:9
3
作者 柴变芳 贾彩燕 于剑 《软件学报》 EI CSCD 北大核心 2014年第12期2753-2766,共14页
随着万维网和在线社交网站的发展,规模大、结构复杂、动态性强的大规模网络应用而生.发现这些网络的潜在结构,是分析和理解网络数据的基本途径.概率模型以其灵活的建模和解释能力、坚实的理论框架成为各领域研究网络结构发现任务的有效... 随着万维网和在线社交网站的发展,规模大、结构复杂、动态性强的大规模网络应用而生.发现这些网络的潜在结构,是分析和理解网络数据的基本途径.概率模型以其灵活的建模和解释能力、坚实的理论框架成为各领域研究网络结构发现任务的有效工具,但该类方法存在计算瓶颈.近几年出现了一些基于概率模型的大规模网络结构发现方法,主要从网络表示、结构假设、参数求解这3个方面解决计算问题.按照模型参数求解策略将已有方法归为两类:随机变分推理(stochastic variational inference)方法和在线EM(online expectation maximazation)方法,详细分析各方法的设计动机、原理和优缺点.定性和定量地对比、分析典型方法的特点和性能,并提出大规模网络结构发现模型的设计原则.最后,概括该领域研究的核心问题,展望未来发展趋势. 展开更多
关键词 大规模网络 结构发现 随机推理 在线EM算法 三角形模体
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部