To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed ...To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.展开更多
A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand a...A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.展开更多
According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield mac...According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.展开更多
The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the ded...The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.展开更多
基金Foundation item: Project(40372124) supported by the National Natural Science of China project(05R214145) supported by Postdoctor Research Foundation of Chinaproject(B308) supported by Shanghai Leading Academic Discipline
文摘To study the relationship between grouting effect and grouting factors, three factors (seven parameters) directionless pressure and small cycle grouting model experiment on sandy gravel was done, which was designed according to uniform design method. And regressing was applied to analysis of the test data. The two models test results indicate that when the diffusing radius of grout changes from 26 to 51 cm, the grouted sandy gravel compressing strength changes from 2.13 to 12.30 MPa; the relationship between diffusing radius(R) and water cement ratio(m), permeability coefficient(k), grouting pressure(p), grouting time(t) is R=19.953m^0.121k^0.429p^0.412t^0.437; the relationship between compressing strength(P) and porosity(n), water cement ratio, grouting pressure, grouting time is P =0.984n^0.517m6-1.488p^0.118t^0.031. So the porosity of sandy gravel, the permeability coefficient of sandy gravel, grouting pressure, grouting time, water cement ratio are main factors to influence the grouting effect. The grouting pressure is the main factor to influence grouting diffusing radius, and the water cement ratio is the main factor to influence grouted sandy gravel compressing strength.
基金Projects (40802070, 40841014) supported by the National Natural Science Foundation of ChinaProject (B308) supported by Shanghai Leading Academic Discipline Project, China
文摘A case study of seismic response of an earth embankment foundation on liquefiable soils in Kansai area,western Japan was presented. Based on a calibrated cyclic elasto-plastic constitutive model for liquefiable sand and Biot dynamic coupled theory,the seismic analysis was carried out by using a dynamic effective stress finite element method under plane strain condition. A recent design study was illustrated in detail for a river earth embankment subjected to seismic excitation on the saturated deposits with liquefiable sands. Simulated results of the embankment foundation during liquefaction were obtained for acceleration,displacement,and excess pore water pressures,which were considered to yield useful results for earthquake geotechnical design. The results show that the foundation soil reaches a fully liquefied state with high excess pore pressure ratios approaching to 1.0 due to the earthquake shaking. At the end of the earthquake,the extensive liquefaction causes about 1.0 m lateral spreading at the toe and 60 cm settlement at the crest of the earth embankment.
基金Project(2007CB714006) supported by the National Basic Research Program of China
文摘According to the actual engineering problem that the precise load model of shield machine is difficult to achieve,a design method of sliding mode robust controller oriented to the automatic rectification of shield machine was proposed. Firstly,the nominal load model of shield machine and the ranges of model parameters were obtained by the soil mechanics parameters of certain geological conditions and the messages of the self-learning of shield machine by tunneling for previous segments. Based on this rectification mechanism model with known ranges of parameters,a sliding mode robust controller was proposed. Finally,the simulation analysis was developed to verify the effectiveness of the proposed controller. The simulation results show that the sliding mode robust controller can be implemented in the attitude rectification process of the shield machine and it has stronger robustness to overcome the soil disturbance.
基金Project(51178298)supported by the National Natural Science Foundation of China
文摘The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system(DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system(RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels(CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.