尽管近年来中国氮(N)沉降水平逐渐趋于稳定,但中国东南地区N沉降相比于其他地区仍处于较高水平。N沉降对陆地生态系统碳循环过程的影响不容忽视。微生物碳利用效率(CUE)是指微生物将吸收的碳转化为生物量碳的效率,高微生物CUE意味着高...尽管近年来中国氮(N)沉降水平逐渐趋于稳定,但中国东南地区N沉降相比于其他地区仍处于较高水平。N沉降对陆地生态系统碳循环过程的影响不容忽视。微生物碳利用效率(CUE)是指微生物将吸收的碳转化为生物量碳的效率,高微生物CUE意味着高土壤有机碳存储潜力。因此,探究N沉降背景下微生物CUE的变化将有助于进一步认识陆地生态系统土壤碳存储的变化。然而,目前关于N沉降下微生物群落结构的变化如何影响微生物CUE鲜有报道。在福建省泉州市戴云山国家级自然保护区的罗浮栲林通过N添加模拟N沉降。实验共包括三个N添加处理:对照(CT,+0 kg hm^(-2)a^(-1))、低氮(LN,+40 kg hm^(-2)a^(-1))和高氮(HN,+80 kg hm^(-2)a^(-1))。测定不同处理土壤基本理化性质、微生物生物量、酶活性和CUE,并使用高通量测序对微生物群落结构和多样性进行测定。结果表明,N添加显著影响微生物CUE,随着N添加水平的增加,CUE逐渐增加;相反,土壤pH、可提取有机碳(EOC)和微生物生物量碳(MBC)均呈现下降趋势。N添加对土壤微生物群落α多样性总体上无显著影响。非度量多维度尺度(NMDS)分析表明,N添加显著改变了微生物的群落结构。尤其对于真菌而言,不同N添加处理的真菌群落明显分开为三簇。微生物CUE分别与土壤pH、EOC和真菌NMDS1呈显著的负相关关系,与矿质氮含量呈现显著正相关关系。随机森林分析表明,N添加下影响微生物CUE的类群主要是富营养菌(如变形菌门和子囊菌门)。研究表明N添加下,微生物CUE不仅受土壤养分有效性和pH的调控,同时还受土壤微生物群落结构的影响。未来进一步探究N添加下土壤微生物关键类群的变化可能有助于揭示森林生态系统碳存储过程。展开更多
文摘尽管近年来中国氮(N)沉降水平逐渐趋于稳定,但中国东南地区N沉降相比于其他地区仍处于较高水平。N沉降对陆地生态系统碳循环过程的影响不容忽视。微生物碳利用效率(CUE)是指微生物将吸收的碳转化为生物量碳的效率,高微生物CUE意味着高土壤有机碳存储潜力。因此,探究N沉降背景下微生物CUE的变化将有助于进一步认识陆地生态系统土壤碳存储的变化。然而,目前关于N沉降下微生物群落结构的变化如何影响微生物CUE鲜有报道。在福建省泉州市戴云山国家级自然保护区的罗浮栲林通过N添加模拟N沉降。实验共包括三个N添加处理:对照(CT,+0 kg hm^(-2)a^(-1))、低氮(LN,+40 kg hm^(-2)a^(-1))和高氮(HN,+80 kg hm^(-2)a^(-1))。测定不同处理土壤基本理化性质、微生物生物量、酶活性和CUE,并使用高通量测序对微生物群落结构和多样性进行测定。结果表明,N添加显著影响微生物CUE,随着N添加水平的增加,CUE逐渐增加;相反,土壤pH、可提取有机碳(EOC)和微生物生物量碳(MBC)均呈现下降趋势。N添加对土壤微生物群落α多样性总体上无显著影响。非度量多维度尺度(NMDS)分析表明,N添加显著改变了微生物的群落结构。尤其对于真菌而言,不同N添加处理的真菌群落明显分开为三簇。微生物CUE分别与土壤pH、EOC和真菌NMDS1呈显著的负相关关系,与矿质氮含量呈现显著正相关关系。随机森林分析表明,N添加下影响微生物CUE的类群主要是富营养菌(如变形菌门和子囊菌门)。研究表明N添加下,微生物CUE不仅受土壤养分有效性和pH的调控,同时还受土壤微生物群落结构的影响。未来进一步探究N添加下土壤微生物关键类群的变化可能有助于揭示森林生态系统碳存储过程。
文摘在气候变化和过度放牧等的影响下,全球草地灌丛化现象愈发严重。然而,高寒草地土壤微生物群落对灌丛化的响应尚不清楚。以青藏高原东缘3种典型灌丛化草地(高山绣线菊Spiraea alpina、金露梅Potentilla fruticosa、小叶锦鸡儿Caragana microphylla)和无灌丛生长的草地为研究对象,通过分析植物群落结构、土壤碳组分、细菌群落结构及菌群互作关系,拟揭示高寒草原灌丛化对土壤微生物群落结构和土壤碳库的影响。基于16S rRNA基因测序技术研究土壤细菌群落及其共生特征,并结合傅立叶变换红外光谱(FTIR)分析了土壤有机碳(SOC)化学组成。结果表明,灌丛化草地(小叶锦鸡儿和金露梅)地上植物群落组成均发生显著改变(P<0.01),而地上植物群落多样性和丰富度无显著变化(P>0.05)。三种灌丛样地地上生物量均显著高于草地(P<0.05),而地下生物量则无显著差异(P>0.05)。灌丛化对SOC和全氮(TN)含量无显著影响,但减小了表层与深层SOC含量的差异,具体表现为草地表层土壤SOC显著高于其深层(P<0.05),但三种灌丛样地无此趋势。三种灌丛和草地表层和深层土壤SOC组分均以芳香族为主(除小叶锦鸡儿深层土壤外),灌丛和草地样地间芳香族含量无显著差异(P>0.05),但小叶锦鸡儿样地中芳香族含量呈表聚型分布(P<0.05)。通过随机森林模型分析发现,酸杆菌门和放线菌门分布是表层和深层土壤中灌丛化的最重要预测因子。非度量多维尺度分析(NMDS)结果表明,灌丛化显著改变了高寒草地土壤细菌群落组成(P<0.05),且植物群落结构和SOC化学组成是影响土壤细菌群落结构变化的主要因子。通过功能预测分析得到4个生物代谢通路,分别为细胞过程(Cellular processes)、环境信息处理(Environmental information processing)、代谢(Metabolism)和遗传信息处理(Genetic information processing),其中土壤微生物的代谢功能在灌丛表层和深层土壤中富集(P<0.05)。三种灌丛草地表层和深层土壤细菌共现网络均较未灌丛化草地更为复杂和稳定,并且偏利共生或共生关系在高寒草地细菌群落结构建立中发挥重要作用。综上所述,灌丛化对土壤细菌群落结构及土壤碳库有重要调控作用,研究结果丰富了高寒草地土壤微生物群落组成和多样性的研究内容,为高寒草地土壤碳源汇效应提供了一定的理论基础。