期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
考虑土拱效应的盾构隧道开挖面稳定性 被引量:17
1
作者 武军 廖少明 时振昊 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期213-220,共8页
在考虑松动土体内的三维土拱效应和开挖土体与刀盘摩擦力的基础上,改进了传统的筒仓楔形体模型计算方法.结果表明:最小土压应力并不是传统方法假设的均匀分布形式,而是近似呈抛物线分布;土的黏聚力、内摩擦角、刀盘与松动土体间的摩擦... 在考虑松动土体内的三维土拱效应和开挖土体与刀盘摩擦力的基础上,改进了传统的筒仓楔形体模型计算方法.结果表明:最小土压应力并不是传统方法假设的均匀分布形式,而是近似呈抛物线分布;土的黏聚力、内摩擦角、刀盘与松动土体间的摩擦角以及埋深等物理参数对其最小土压应力均有一定程度的影响;降低刀盘与开挖面土体间的摩擦角可以显著增加开挖面的极限稳定性.通过与模型试验结果和其他计算方法的对比分析,验证了本文计算方法的合理性. 展开更多
关键词 盾构隧道 拱效应 最小土压应力 开挖面稳定
在线阅读 下载PDF
基于砂箱模型试验的加筋土挡墙合理布筋方式探讨 被引量:2
2
作者 张玉广 罗强 +2 位作者 张良 蒋良潍 谭小英 《长江科学院院报》 CSCD 北大核心 2016年第5期76-82,87,共8页
针对加筋土挡墙中拉筋水平和垂直间距、筋带宽度和拉筋长度的合理布设问题,根据拉筋所受土压力相等的等土压应力面积法,提出了拉筋水平等间距、垂向沿埋深逐层加密的布置方式及相应的计算式;采用砂箱模型试验,以墙体处于极限稳定状态下... 针对加筋土挡墙中拉筋水平和垂直间距、筋带宽度和拉筋长度的合理布设问题,根据拉筋所受土压力相等的等土压应力面积法,提出了拉筋水平等间距、垂向沿埋深逐层加密的布置方式及相应的计算式;采用砂箱模型试验,以墙体处于极限稳定状态下的最少用筋面积为条件,探讨了加筋土挡墙的合理布筋方式。试验分析表明:采用与土压力沿深度逐渐增大相适应的拉筋"上疏下密"布置形式可实现筋带均衡受力,在"窄筋密布"的条件下具有更好的稳定性且用筋量更少;与墙后填土潜在破裂楔体呈上宽下窄形状相适应的筋带"上长下短"布置方式稳定性优于"上下等长"布置;采用"窄筋长布"的方式较"宽筋短布"能增加筋带有效锚固面积,提高挡墙稳定性。 展开更多
关键词 加筋挡墙 砂箱模型 合理布筋方式 土压应力面积法 潜在破裂面
在线阅读 下载PDF
高速铁路隧道仰拱结构受力现场实测分析 被引量:39
3
作者 杜明庆 张顶立 +1 位作者 张素磊 房倩 《中国铁道科学》 EI CAS CSCD 北大核心 2017年第5期53-61,共9页
针对高速铁路隧道仰拱受力状态复杂且对高速列车行车安全至关重要的特点,现场测试兰新第二双线福川隧道返工后仰拱混凝土和钢筋的应力,分析仰拱结构中混凝土和钢筋的受力特征及应力变化规律。结果表明:受隧道二衬自重及上部围岩荷载、... 针对高速铁路隧道仰拱受力状态复杂且对高速列车行车安全至关重要的特点,现场测试兰新第二双线福川隧道返工后仰拱混凝土和钢筋的应力,分析仰拱结构中混凝土和钢筋的受力特征及应力变化规律。结果表明:受隧道二衬自重及上部围岩荷载、隧道基底围岩膨胀、轨道道床及列车荷载的作用,返工后仰拱混凝土经历了受压、出现局部拉应力、拉压应力稳定的变化过程;仰拱中混凝土和钢筋的最大拉应力均出现在仰拱中心上部,从仰拱返工到隧道运营的整个过程中,混凝土的最大拉应力为1.9MPa,最大压应力约为8MPa;地下水大量补充后,隧底围岩膨胀释放大量荷载,使得混凝土应力、钢筋应力以及土压应力迅速增大。基于监测结果及地质条件,提出将福川隧道仰拱底鼓分为轻微、中度和严重3种程度,针对每种程度的底鼓给出相应的控制措施。 展开更多
关键词 高速铁路 隧道 仰拱底鼓 混凝应力 钢筋应力 土压应力
在线阅读 下载PDF
Improved method for determining active earth pressure considering arching effect and actual slip surface 被引量:3
4
作者 HE Zhong-ming LIU Zheng-fu +1 位作者 LIU Xiao-hong BIAN Han-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2032-2042,共11页
To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a... To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods. 展开更多
关键词 particle image velocimetry retaining wall soil arching effect active earth pressure
在线阅读 下载PDF
Centrifuge modeling of dynamic behavior of pile-reinforced slopes during earthquakes 被引量:5
5
作者 于玉贞 邓丽军 +1 位作者 孙逊 吕禾 《Journal of Central South University》 SCIE EI CAS 2010年第5期1070-1078,共9页
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre... A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period. 展开更多
关键词 EARTHQUAKE SLOPE stabilizing pile dynamic behavior centrifuge modeling earth pressure ACCELERATION bending moment
在线阅读 下载PDF
Mechanical characteristics of intact Middle Pleistocene Epoch loess in northwestern China 被引量:4
6
作者 钟祖良 刘新荣 《Journal of Central South University》 SCIE EI CAS 2012年第4期1163-1168,共6页
In order to research the mechanical characteristics of intact Middle Pleistocene Epoch loess, triaxial shear tests and isotonic compression test of intact Middle Pleistocene Epoch loess were conducted by improved SJ-I... In order to research the mechanical characteristics of intact Middle Pleistocene Epoch loess, triaxial shear tests and isotonic compression test of intact Middle Pleistocene Epoch loess were conducted by improved SJ-IA triaxial shear equipment. According to test results, it can be found that the intact Middle Pleistocene Epoch loess has the properties of shear dilatancy and shear shrinkage. With the increase of confining pressure, stress-strain curve develops from softening to hardening. The failure mode of intact Middle Pleistocene Epoch loess is shear failure with the rupture angle between 55° and 61°. And it is better to determine the yield stress (py, qy) of the intact loess under different confining pressures by using the εv-q/p curve. Along with the increase of confining pressure, yield deviatoric stress qy and yield spherical stress py present logarithmic relationship. Besides, the strength parameters, elastic modulus K and G of intact loess, are obtained, which are benefit for loess projects design. 展开更多
关键词 yield stress compression testing failure model Middle Pleistocene Epoch loess
在线阅读 下载PDF
Stress-strain relationship of unsaturated cohesive soil 被引量:2
7
作者 梅国雄 陈启明 姜朋明 《Journal of Central South University》 SCIE EI CAS 2010年第3期653-657,共5页
A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The... A moisture-content based constitutive model was proposed based on the hyperbolic model as an attempt to move towards the implementation of unsaturated soil mechanics into routine geotechnical engineering practice. The stress-strain behavior of in-situ soil at a depth of 5 m was investigated by conducting undrained triaxial compression tests using the remolded soil samples. The test results show that the stress-strain relationship of unsaturated cohesive soil is still hyperbolic. The values of parameters a and b given in the model decrease with increasing the confining pressure for soil samples with the same moisture content and increase with increasing the moisture content for soil samples under the same confining pressure. The relationships between parameters a, b and moisture content were studied for confining pressures of 100, 150, 200 and 250 kPa. The comparison between the measured and predicted stress-strain curves for an additional group of soil samples, having a moisture content of 25.4%, shows that the proposed moisture content-dependent hyperbolic model provides a good prediction of stress-strain behavior of unsaturated cohesive soil. 展开更多
关键词 unsaturated cohesive soil moisture content triaxial compression test stress-strain relationship
在线阅读 下载PDF
Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures 被引量:8
8
作者 丁发兴 余志武 《Journal of Central South University of Technology》 EI 2006年第6期726-732,共7页
Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co... Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references. 展开更多
关键词 CONCRETE concrete-filled steel tubular colunm BEHAVIOR high temperature
在线阅读 下载PDF
Estimation of compaction grouting pressure in strain softening soils 被引量:13
9
作者 杨小礼 邹金锋 《Journal of Central South University》 SCIE EI CAS 2009年第4期653-657,共5页
A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield... A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations. 展开更多
关键词 compaction grouting strain softening spherical cavity expansion ultimate pressure
在线阅读 下载PDF
Active earth pressure for subgrade retaining walls in cohesive backfills with tensile strength cut-off subjected to seepage effects
10
作者 FU He-lin WANG Cheng-yang LI Huan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第7期2148-2159,共12页
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred... The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion. 展开更多
关键词 active earth pressure seepage effect subgrade retaining wall tensile strength cut-off
在线阅读 下载PDF
Size effect of confined concrete subjected to axial compression 被引量:4
11
作者 李振宝 宋佳 +1 位作者 杜修力 杨修广 《Journal of Central South University》 SCIE EI CAS 2014年第3期1217-1226,共10页
In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effec... In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect. 展开更多
关键词 confined concrete mechanical property size effect configuration type of transverse reinforcement volumetric ratio oftransverse reinforcement concrete cover
在线阅读 下载PDF
Moisture effect on compressive behavior of concrete under dynamic loading 被引量:3
12
作者 周继凯 丁宁 《Journal of Central South University》 SCIE EI CAS 2014年第12期4714-4722,共9页
The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were exe... The effect of moisture content upon compressive mechanical behavior of concrete under impact loading was studied. The axial rapid compressive loading tests of over 50 specimens with five different saturations were executed. The technique "split Hopkinson pressure bar"(SHPB) was used. The impact velocity was 10 m/s with corresponding strain rate of 50 s-1. The compressive behavior of materials was measured in terms of stress-strain curves, dynamic compressive strength, dynamic increase factor(DIF) and critical strain at a maximum stress. The data obtained from test indicate that both ascending and descending portions of stress-stain curves are affected by moisture content. However, the effect is noted to be more significant in ascending portion of the stress-strain curves. Dynamic compressive strength is higher at lower moisture content and weaker at higher moisture content.Furthermore, under nearly saturated condition, an increase in compressive strength can be found. The effect of moisture content on the average DIF of concrete is not significant. The critical compressive strain of concrete does not change with moisture content. 展开更多
关键词 concrete split Hopkinson pressure bar high strain rate compressive behavior moisture content
在线阅读 下载PDF
Shear creep parameters of simulative soil for deep-sea sediment 被引量:1
13
作者 马雯波 饶秋华 +2 位作者 李鹏 郭帅成 冯康 《Journal of Central South University》 SCIE EI CAS 2014年第12期4682-4689,共8页
Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the... Based on mineral component and in-situ vane shear strength of deep-sea sediment, four kinds of simulative soils were prepared by mixing different bentonites with water in order to find the best simulative soil for the deep-sea sediment collected from the Pacific C-C area. Shear creep characteristics of the simulative soil were studied by shear creep test and shear creep parameters were determined by Burgers creep model. Research results show that the shear creep curves of the simulative soil can be divided into transient creep, unstable creep and stable creep, where the unstable creep stage is very short due to its high water content. The shear creep parameters increase with compressive stress and change slightly or fluctuate to approach a constant value with shear stress, and thus average creep parameters under the same compressive stress are used as the creep parameters of the simulative soil. Traction of the deep-sea mining machine walking at a constant velocity can be calculated by the shear creep constitutive equation of the deep-sea simulative soil, which provides a theoretical basis for safe operation and optimal design of the deep-sea mining machine. 展开更多
关键词 shear creep parameter simulative soil deep-sea sediment shear creep test Burgers model
在线阅读 下载PDF
Secondary settlement estimation in surcharge preload subject to time effect of secondary consolidation coefficient 被引量:2
14
作者 胡亚元 杨平 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期341-352,共12页
In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried o... In order to eliminate the settlement underestimation in surcharge preload engineering, a study based on Bjerrum's creep diagram and the tangent slope definition of secondary consolidation coefficient was carried out to analyze the time effect of secondary consolidation coefficient of over consolidated soil, and a time–growth model for it was formulated. As Bjerrum's creep diagram is an idealized model, oedometer tests were performed to improve the above time–growth model of secondary consolidation coefficient for the purpose of achieving a better agreement with the actual ground situations. It is found that secondary consolidation coefficient of over consolidated soil not only decreases with the ratio of historical maximum to current effective stress of soil(OCR), but also increases with the development time of secondary consolidation. No matter how large OCR is, the long-term time effect of secondary consolidation coefficient of over consolidated soil is all significant. Based on the above results, a model for settlement estimation was formulated and a case study to estimate it indicates that the settlement estimated by our method is 2–5 times larger than that estimated by the previous method. Moreover, the larger the OCR is as well as the longer the service life is, the larger the difference between our method and the previous method is. Thus, the post-construction secondary settlement in surcharge preload engineering will be underestimated when neglecting the time effect of secondary consolidation coefficient in over consolidated state. 展开更多
关键词 post-construction secondary settlement time effect tangent slope secondary consolidation coefficient
在线阅读 下载PDF
Analysis on effective stress formula and consolidation of gassy muddy clay
15
作者 徐浩峰 应宏伟 +1 位作者 谢新宇 谢康和 《Journal of Central South University》 SCIE EI CAS 2014年第4期1594-1599,共6页
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ... In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected. 展开更多
关键词 muddy clay gas bubble consolidation effective stress unsaturated soil
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部