期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的铁氧体零件裂缝检测
被引量:
2
1
作者
李子豪
魏东辰
严小军
《计算机工程与设计》
北大核心
2020年第11期3294-F0003,共8页
为提升铁氧体零件缺陷检测的精度和自动化程度,提出一种基于卷积神经网络的铁氧体零件裂缝检测方法。根据铁氧体零件的自身形状特点,设计一种基于ResNet-18的四分类神经网络,通过9420张128×128分辨率的铁氧体零件图片对该网络进行...
为提升铁氧体零件缺陷检测的精度和自动化程度,提出一种基于卷积神经网络的铁氧体零件裂缝检测方法。根据铁氧体零件的自身形状特点,设计一种基于ResNet-18的四分类神经网络,通过9420张128×128分辨率的铁氧体零件图片对该网络进行训练,在验证集上达到了97%的分类准确率。提出一种滑动子区域计分方法,与训练好的神经网络模型结合,在测试集上可达到97.9%的检测精度。验证结果表明,该方法能够检测宽度在0.1 mm左右、长度超过0.2 mm的裂缝。
展开更多
关键词
卷积神经网络
铁氧体
零件
裂缝检测
视觉检测
深度学习
圆环形零件
在线阅读
下载PDF
职称材料
题名
基于卷积神经网络的铁氧体零件裂缝检测
被引量:
2
1
作者
李子豪
魏东辰
严小军
机构
北京航天控制仪器研究所工艺技术研究室
出处
《计算机工程与设计》
北大核心
2020年第11期3294-F0003,共8页
文摘
为提升铁氧体零件缺陷检测的精度和自动化程度,提出一种基于卷积神经网络的铁氧体零件裂缝检测方法。根据铁氧体零件的自身形状特点,设计一种基于ResNet-18的四分类神经网络,通过9420张128×128分辨率的铁氧体零件图片对该网络进行训练,在验证集上达到了97%的分类准确率。提出一种滑动子区域计分方法,与训练好的神经网络模型结合,在测试集上可达到97.9%的检测精度。验证结果表明,该方法能够检测宽度在0.1 mm左右、长度超过0.2 mm的裂缝。
关键词
卷积神经网络
铁氧体
零件
裂缝检测
视觉检测
深度学习
圆环形零件
Keywords
convolutional neural network
ferrite part
crack detection
visual inspection
deep learning
circular ring part
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的铁氧体零件裂缝检测
李子豪
魏东辰
严小军
《计算机工程与设计》
北大核心
2020
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部