期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
语义驱动的司法文档学习分类方法
被引量:
2
1
作者
马建刚
马应龙
《计算机应用》
CSCD
北大核心
2019年第6期1696-1700,共5页
基于海量的司法文书进行的高效司法文档分类有助于目前的司法智能化应用,如类案推送、文书检索、判决预测和量刑辅助等。面向通用领域的文本分类方法因没有考虑司法领域文本的复杂结构和知识语义,导致司法文本分类的效能很低。针对该问...
基于海量的司法文书进行的高效司法文档分类有助于目前的司法智能化应用,如类案推送、文书检索、判决预测和量刑辅助等。面向通用领域的文本分类方法因没有考虑司法领域文本的复杂结构和知识语义,导致司法文本分类的效能很低。针对该问题提出了一种语义驱动的方法来学习和分类司法文书。首先,提出并构建了面向司法领域的领域知识模型以清晰表达文档级语义;然后,基于该模型对司法文档进行相应的领域知识抽取;最后,利用图长短期记忆模型(Graph LSTM)对司法文书进行训练和分类。实验结果表明该方法在准确率和召回率方面明显优于常用的长短期记忆(LSTM)模型、多类别逻辑回归和支持向量机等方法。
展开更多
关键词
司法大数据
领域知识
模型
文本分类
智慧检务
图长短期记忆模型
在线阅读
下载PDF
职称材料
题名
语义驱动的司法文档学习分类方法
被引量:
2
1
作者
马建刚
马应龙
机构
中国人民大学法学院
国家检察官学院
河南省人民检察院
华北电力大学控制与计算机工程学院
出处
《计算机应用》
CSCD
北大核心
2019年第6期1696-1700,共5页
基金
国家重点研发计划项目(2018YFC0831404,2018YFC0830605)
中国博士后科学基金资助项目(2016M591317)~~
文摘
基于海量的司法文书进行的高效司法文档分类有助于目前的司法智能化应用,如类案推送、文书检索、判决预测和量刑辅助等。面向通用领域的文本分类方法因没有考虑司法领域文本的复杂结构和知识语义,导致司法文本分类的效能很低。针对该问题提出了一种语义驱动的方法来学习和分类司法文书。首先,提出并构建了面向司法领域的领域知识模型以清晰表达文档级语义;然后,基于该模型对司法文档进行相应的领域知识抽取;最后,利用图长短期记忆模型(Graph LSTM)对司法文书进行训练和分类。实验结果表明该方法在准确率和召回率方面明显优于常用的长短期记忆(LSTM)模型、多类别逻辑回归和支持向量机等方法。
关键词
司法大数据
领域知识
模型
文本分类
智慧检务
图长短期记忆模型
Keywords
judicial big data
domain knowledge model
text categorization
smart procuratorate
Graph Long Short-Term Memory(Graph LSTM) model
分类号
TP309 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
语义驱动的司法文档学习分类方法
马建刚
马应龙
《计算机应用》
CSCD
北大核心
2019
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部