变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于...变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(Variational Graph Autoencoder based on Multidimensional Cloud Model,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性.展开更多
聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息...聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。展开更多
单细胞数据聚类在生物信息分析中具有重要作用,但受测序原理和测序平台的限制,单细胞数据集普遍存在高维稀疏性、高方差噪声和基因数据缺失的问题,导致单细胞数据在聚类分析和应用方面仍面临诸多挑战。现有的单细胞聚类方法主要针对细...单细胞数据聚类在生物信息分析中具有重要作用,但受测序原理和测序平台的限制,单细胞数据集普遍存在高维稀疏性、高方差噪声和基因数据缺失的问题,导致单细胞数据在聚类分析和应用方面仍面临诸多挑战。现有的单细胞聚类方法主要针对细胞和基因表达间的关系进行建模,忽略了对细胞间潜在特征关系的充分挖掘以及对噪声的去除,导致聚类结果不理想,从而阻碍了后期对数据的分析。针对上述问题,提出了一种联合零膨胀负二项(Zero Inflated Negative Binomial,ZINB)模型与图注意力自编码器的自优化单细胞聚类算法(Self-optimized Single Cell Clustering Using ZINB Model and Graph Attention Autoencoder,scZDGAC)。该算法首先使用ZINB模型并结合可扩展的DCA去噪算法,通过ZINB分布更好地拟合数据特征分布,提升自编码器的去噪性能,并减小噪声和数据丢失对KNN算法输出的影响;然后通过图注意力自编码器在不同权重的细胞之间传播信息,更好地捕获细胞间的潜在特征进行聚类;最后scZDGAC采用自优化的方法使原本两个独立的聚类模块和特征模块相互受益,不断迭代更新聚类中心,进一步提升聚类性能。为了对聚类结果进行评价,文中使用调整兰德指数(ARI)和标准化互信息(NMI)两个通用评价指标。在6个不同规模的单细胞数据集上与其他算法进行对比实验,结果表明,所提聚类算法在聚类性能上较其他方法有很大提高,很好地展现了该算法的鲁棒性。展开更多
文摘变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(Variational Graph Autoencoder based on Multidimensional Cloud Model,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性.
文摘聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。
文摘单细胞数据聚类在生物信息分析中具有重要作用,但受测序原理和测序平台的限制,单细胞数据集普遍存在高维稀疏性、高方差噪声和基因数据缺失的问题,导致单细胞数据在聚类分析和应用方面仍面临诸多挑战。现有的单细胞聚类方法主要针对细胞和基因表达间的关系进行建模,忽略了对细胞间潜在特征关系的充分挖掘以及对噪声的去除,导致聚类结果不理想,从而阻碍了后期对数据的分析。针对上述问题,提出了一种联合零膨胀负二项(Zero Inflated Negative Binomial,ZINB)模型与图注意力自编码器的自优化单细胞聚类算法(Self-optimized Single Cell Clustering Using ZINB Model and Graph Attention Autoencoder,scZDGAC)。该算法首先使用ZINB模型并结合可扩展的DCA去噪算法,通过ZINB分布更好地拟合数据特征分布,提升自编码器的去噪性能,并减小噪声和数据丢失对KNN算法输出的影响;然后通过图注意力自编码器在不同权重的细胞之间传播信息,更好地捕获细胞间的潜在特征进行聚类;最后scZDGAC采用自优化的方法使原本两个独立的聚类模块和特征模块相互受益,不断迭代更新聚类中心,进一步提升聚类性能。为了对聚类结果进行评价,文中使用调整兰德指数(ARI)和标准化互信息(NMI)两个通用评价指标。在6个不同规模的单细胞数据集上与其他算法进行对比实验,结果表明,所提聚类算法在聚类性能上较其他方法有很大提高,很好地展现了该算法的鲁棒性。