期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型
1
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局网络
在线阅读 下载PDF
基于变分图自编码器的多变量时序数据异常检测
2
作者 尹文萃 谢平 +2 位作者 叶成绪 韩佳新 夏星 《计算机科学》 北大核心 2025年第S1期688-695,共8页
多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特... 多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特征相似性构建结构关联关系图,然后将该多变量时序数据间的关联关系通过变分图自编码器进行优化,提高多变量时序数据的结构特征表征能力;其次,通过多头注意力机制提升多变量时序数据不同通道间的特征表示,并和多变量时序数据结构信息进行融合;最后,采用极值理论选取阈值并进行无监督异常检测。实验结果表明,所提模型在SWaT,MSL等数据集上F1分数达到了81.43%和99.67%的结果。 展开更多
关键词 异常检测 多变量时序数据 结构学习 变分图自编码器
在线阅读 下载PDF
基于异常感知的变分图自编码器的图级异常检测算法
3
作者 林馥 李明康 +3 位作者 罗学雄 张书豪 张越 王梓桐 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1968-1981,共14页
图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能... 图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能对异常图数据进行充分挖掘,且对异常标签比较敏感,无法有效地捕捉异常样本的特征,存在模型泛化能力差、性能翻转问题,异常检测能力有待提升.提出了一种基于异常感知的变分图自编码器的图级异常检测算法(anomaly-aware variational graph autoencoder based graph-level anomaly detection algorithm,VGAE-D),利用具有异常感知能力的变分图自编码器提取正常图和异常图数据的特征,并差异化正常图和异常图在编码空间中的编码信息分布,对图编码信息进一步挖掘来计算图的异常得分.在不同领域的8个公开数据集上进行实验,实验结果表明,提出的图级别异常检测方法能有效地对不同数据集中的异常图进行识别,异常检测性能高于目前主流的图级别异常方法,且具有少异常样本学习能力,较大程度上克服了性能翻转问题. 展开更多
关键词 级别异常检测 神经网络 变分图自编码器 表示学习 少样本学习
在线阅读 下载PDF
NLGAE:一种基于改进网络结构及损失函数的图自编码器节点分类模型
4
作者 廖彬 张陶 +1 位作者 于炯 李敏 《计算机科学》 CSCD 北大核心 2024年第10期234-246,共13页
利用图嵌入方法将图的拓扑结构、节点属性等高维异构信息映射到稠密的向量空间,是解决图数据由非欧空间性带来的计算不友好、邻接矩阵的高度空间复杂性等问题的主流方法。在对经典图自编码器模型GAE与VGAE所存在的问题进行分析的基础上... 利用图嵌入方法将图的拓扑结构、节点属性等高维异构信息映射到稠密的向量空间,是解决图数据由非欧空间性带来的计算不友好、邻接矩阵的高度空间复杂性等问题的主流方法。在对经典图自编码器模型GAE与VGAE所存在的问题进行分析的基础上,尝试从编码器、解码器及损失函数3个方面对基于图自编码器的图嵌入方法进行改进,提出一种基于改进网络结构及损失函数的图自编码器模型NLGAE。首先,在模型结构设计上,一方面将编码器中堆叠的图卷积层倒置,以解决GAE与VGAE中无参Decoder缺乏灵活性并且表达能力不足的问题,另一方面引入注意力机制的图卷积网络GAT来解决节点之间的权重系数固化的问题;其次,重新设计的损失函数能够同时考虑到图结构与节点特征属性两部分信息。对比实验结果表明:NLGAE作为一种无监督模型,能够学习到高质量的节点嵌入特征,在下游节点分类任务上优于DeepWalk,GAE,GrpahMAE,GATE等经典无监督模型,并且在选择合适分类模型的情况下,甚至优于GAT和GCN等有监督的图神经网络模型。 展开更多
关键词 表示学习 图自编码器 注意力机制 节点分类
在线阅读 下载PDF
基于图自编码器和GRU网络的分层交通流预测模型
5
作者 赵子琪 杨斌 张远广 《计算机科学》 CSCD 北大核心 2024年第S01期680-685,共6页
准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有... 准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有局限性。针对现有预测模型无法充分挖掘交通流的时空特性的问题,提出了基于改进的图自编码器和门控循环单元的分层交通预测模型。首先使用图注意力自编码器以无监督的方式深度挖掘交通流的空间特性,然后使用门控循环单元进行时间特征提取。分层结构采用分开训练的方式进行时空依赖关系的学习,旨在获取路网天然存在的空间拓扑特征,使其可以兼容不同时间步下的交通流预测任务。大量实验证明,所提出的GAE-GRU模型在不同数据集下的交通预测任务中取得了优异的表现,MAE,RMSE和MAPE指标均优于基线模型。 展开更多
关键词 交通流预测 图自编码器 门控循环单元 分层 时空依赖
在线阅读 下载PDF
结合路径掩蔽和双解码器的图自编码器框架
6
作者 赵韶辉 马晓 王建霞 《计算机工程与应用》 CSCD 北大核心 2024年第24期140-148,共9页
图自编码器作为一种自监督学习方法,在图神经网络领域得到广泛应用。然而,最近的研究表明,现有的图自编码器通常重构整个图结构,容易产生过拟合数据。此外,这些方法过度强调邻居信息而忽略了结构信息,导致在节点分类任务中表现不佳。针... 图自编码器作为一种自监督学习方法,在图神经网络领域得到广泛应用。然而,最近的研究表明,现有的图自编码器通常重构整个图结构,容易产生过拟合数据。此外,这些方法过度强调邻居信息而忽略了结构信息,导致在节点分类任务中表现不佳。针对以上问题,提出了基于路径掩蔽和双解码器的图自编码器框架,用于图表示学习。通过路径掩蔽方法扰动输入图,避免产生过拟合数据。将图神经网络作为编码器,在剩余的图结构上进行消息传递,提高了对图数据的学习能力。提出双解码器对掩蔽边重构,既包含了邻居信息又捕获了结构信息。模型在5个公开的图数据集上进行了实验,并与当前具有代表性的图表示学习方法进行了对比。实验结果表明,提出的方法在5个数据集上均取得了相似或更好的效果,并且在链接预测和节点分类任务上优于基线方法。 展开更多
关键词 图自编码器 自监督学习 神经网络 链接预测 节点分类
在线阅读 下载PDF
基于图自编码器多尺度特征的自监督群体发现
7
作者 沈国栋 汪晓锋 +3 位作者 毛岱波 王栽胜 张增杰 全大英 《计算机工程与设计》 北大核心 2024年第9期2805-2811,共7页
现有基于图自编码器的群体发现方法通常忽略了编码层多尺度特征对群体发现的影响,同时由于缺少统一的优化目标函数导致次优结果。为此,提出一种基于图自编码器多尺度特征融合的自监督群体发现方法。在图自编码器的基础上引入一种多尺度... 现有基于图自编码器的群体发现方法通常忽略了编码层多尺度特征对群体发现的影响,同时由于缺少统一的优化目标函数导致次优结果。为此,提出一种基于图自编码器多尺度特征融合的自监督群体发现方法。在图自编码器的基础上引入一种多尺度自表达模块,从不同编码层获取具有区分性的节点关系矩阵表示,并与节点潜在表示进行融合;通过节点聚类模块获得初步的群体识别结果;引入一种自监督模块监督节点表示学习过程,获得更优结果,构建一种端对端的网络群体发现模型。在多个公开数据集上进行对比实验,验证了所提方法的有效性,与现有方法相比,其在群体识别准确度上有了明显提升。 展开更多
关键词 图自编码器 群体发现 多尺度特征 自监督学习 特征融合 端到端 统一优化
在线阅读 下载PDF
基于有监督的多视角变分图自编码器的协同致死基因预测算法 被引量:3
8
作者 郝志峰 吴迪 +2 位作者 蔡瑞初 陈学信 温雯 《计算机应用研究》 CSCD 北大核心 2021年第9期2678-2682,共5页
协同致死关系是开发靶向抗癌药物的重要方法之一,通过计算方法预测协同致死基因可以为生物学上的研究提供目标指导,从而提高研究效率并降低实验成本。针对协同致死预测问题,提出了一种通用的、多视角变分图自编码器框架,引入了已知的协... 协同致死关系是开发靶向抗癌药物的重要方法之一,通过计算方法预测协同致死基因可以为生物学上的研究提供目标指导,从而提高研究效率并降低实验成本。针对协同致死预测问题,提出了一种通用的、多视角变分图自编码器框架,引入了已知的协同致死关系作为监督信号,同时对局部的单视角数据和全局的多视角协同致死关系重构进行监督训练,在细粒度下获取每个视角中和协同致死相关的基因隐藏表示,最后将多视角的重构图融合在一起进行协同致死预测。在SynLethDB数据集上的实验结果表明方法的有效性。 展开更多
关键词 协同致死 神经网络 变分图自编码器 多视角 癌症
在线阅读 下载PDF
基于多维云概念嵌入的变分图自编码器研究 被引量:2
9
作者 代劲 张奇瑞 +2 位作者 王国胤 彭艳辉 涂盛霞 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3507-3519,共13页
变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于... 变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(Variational Graph Autoencoder based on Multidimensional Cloud Model,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性. 展开更多
关键词 变分图自编码器 嵌入 多维云模型 概念嵌入 链路预测
在线阅读 下载PDF
节点属性增强的图自编码器 被引量:2
10
作者 张芳 王祺 刘彦北 《天津工业大学学报》 CAS 北大核心 2021年第5期76-80,共5页
针对传统图自编码器的解码方法忽略节点属性作用的问题,提出一种联合重建图结构和属性信息的节点属性增强的图自编码器(NEGAE)模型。模型在编码器部分,采用图卷积神经网络进行图节点数据的特征提取,获得其节点表示;在解码器部分,一方面... 针对传统图自编码器的解码方法忽略节点属性作用的问题,提出一种联合重建图结构和属性信息的节点属性增强的图自编码器(NEGAE)模型。模型在编码器部分,采用图卷积神经网络进行图节点数据的特征提取,获得其节点表示;在解码器部分,一方面采用内积方式对图结构进行重建,另一方面采用反卷积的方式对节点属性进行重建;最后,将结构信息和节点属性信息的重建误差融合到一个统一的损失函数中进行优化。在Cora、Citeseer、Pubmed数据集上的结果表明:该模型在链路预测任务中的ROC曲线下面积(AUC)分别达到91.19%、90.27%、96.69%;聚类任务中的聚类准确度(ACC)分别达到60.31%、50.60%、66.79%,说明NEGAE方法在各种学习任务上均取得了良好的性能。 展开更多
关键词 图自编码器 结构重建 节点属性重建
在线阅读 下载PDF
图自编码器推荐研究综述 被引量:4
11
作者 李方 吴国栋 +3 位作者 涂立静 刘玉良 查志康 李景霞 《计算机工程与科学》 CSCD 北大核心 2022年第2期335-344,共10页
图自编码器GAE是一种源自图神经网络的学习框架,在编码器中引入聚合邻域节点的思想,解码器对图结构数据进行解码,重构图结构数据;在模型中引入监督模块,可以提高图结构数据在模型中的嵌入完整性和数据生成的准确性;编解码可以采用不同... 图自编码器GAE是一种源自图神经网络的学习框架,在编码器中引入聚合邻域节点的思想,解码器对图结构数据进行解码,重构图结构数据;在模型中引入监督模块,可以提高图结构数据在模型中的嵌入完整性和数据生成的准确性;编解码可以采用不同的神经网络,从而利用不同神经网络的优点。近年来GAE推荐逐渐成为推荐系统研究的热点。从无监督学习与半监督学习方面分析了已有GAE推荐研究取得的进展;探讨了已有GAE推荐模型存在用户冷启动问题、可解释性差、模型复杂度高和难以处理数据的多源异构性等方面的问题;并从跨领域推荐,结合传统推荐方法,引入注意力机制,融合各类场景等研究方向对未来GAE推荐进行展望。 展开更多
关键词 图自编码器 推荐 无监督学习 半监督学习
在线阅读 下载PDF
DeepCKI:一个基于变分图自编码器预测细胞-细胞因子相互作用的生物信息学模型 被引量:2
12
作者 朱渊 何瑞瑞 +2 位作者 刘源 朱华庆 李栋 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2022年第8期1033-1042,共10页
细胞因子(cytokine)是一类由免疫细胞和某些非免疫细胞合成和分泌的信号分子,在免疫系统中通过结合相应受体调节细胞生长、分化和调控免疫应答。目前研究多侧重于通过实验方法检测细胞因子和受体的相互作用来研究细胞间的通讯网络,但存... 细胞因子(cytokine)是一类由免疫细胞和某些非免疫细胞合成和分泌的信号分子,在免疫系统中通过结合相应受体调节细胞生长、分化和调控免疫应答。目前研究多侧重于通过实验方法检测细胞因子和受体的相互作用来研究细胞间的通讯网络,但存在实验周期长、设备要求高和成本高等不足。因此,有必要通过计算方法来加快对细胞-细胞因子相互作用(cell-cytokine interactions,CKI)的系统研究。本文提出一种基于变分图自编码器(variational graph auto-encoder,VGAE)预测细胞-细胞因子相互作用的深度学习模型——DeepCKI。该模型可有效融合蛋白质相互作用网络和不同类型的蛋白质特征,充分挖掘网络拓扑结构和节点属性中的有效信息,实现对细胞-细胞因子相互作用的高效预测。与变分自编码和深度神经网络方法相比,采用图结构设计的DeepCKI表现出了最优的预测性能。DeepCKI模型对4种不同类型细胞-细胞因子相互作用的ROC曲线下面积均高于0.8,模型具有一定的鲁棒性和有效性。预测打分排名前100的细胞-细胞因子相互作用中,有36对已被最新发表文献验证,表明该模型具有发现新的细胞-细胞因子相互作用的能力。 展开更多
关键词 细胞-细胞因子相互作用 变分图自编码器 DeepCKI
在线阅读 下载PDF
基于重启随机游走的图自编码器 被引量:2
13
作者 李琳 梁永全 刘广明 《计算机应用研究》 CSCD 北大核心 2021年第10期3009-3013,共5页
针对现有的图自编码器无法捕捉图中节点之间的上下文信息的问题,提出基于重启随机游走的图自编码器。首先,构造两层图卷积网络编码图的拓扑结构和特征,同时进行重启随机游走捕捉节点之间的上下文信息;其次,为了聚合重启随机游走和图卷... 针对现有的图自编码器无法捕捉图中节点之间的上下文信息的问题,提出基于重启随机游走的图自编码器。首先,构造两层图卷积网络编码图的拓扑结构和特征,同时进行重启随机游走捕捉节点之间的上下文信息;其次,为了聚合重启随机游走和图卷积网络获得的表示,设计自适应学习策略,根据两种表示的重要性自适应地分配权重。为了证明该方法的有效性,将图最终的表示应用于节点聚类和链路预测任务。实验结果表明,与基线方法相比,提出的方法实现了更先进的性能。 展开更多
关键词 嵌入 网络表示学习 图自编码器 卷积网络 重启随机游走 自适应学习策略
在线阅读 下载PDF
融合模体图神经网络和自编码器的链路预测 被引量:1
14
作者 鲁富荣 原之安 钱宇华 《计算机科学与探索》 CSCD 北大核心 2023年第1期209-216,共8页
链路预测是网络数据挖掘的一项基本任务,已有很多相关的研究成果。由于图神经网络研究的深入发展,使得相关的模型可以更加有效学习网络的重要特征,在链路预测等任务中取得了很好的预测效果。然而,不同于深度学习中CNN模型,已有的图神经... 链路预测是网络数据挖掘的一项基本任务,已有很多相关的研究成果。由于图神经网络研究的深入发展,使得相关的模型可以更加有效学习网络的重要特征,在链路预测等任务中取得了很好的预测效果。然而,不同于深度学习中CNN模型,已有的图神经网络模型中仅聚合了节点的一阶邻居信息,未充分考虑邻居节点之间的拓扑结构特性。在此基础上,提出了基于模体的图神经网络链路预测模型。该模型采用自编码器结构,在编码过程中,通过模体构建节点的邻接矩阵,进而得到节点的模体邻域,依照每一类模体的邻域聚合邻居信息,通过非线性变换得到节点的表示,最后拼接每一类模体下节点的表示。然而由于不同的模体结构在网络中重要度有所不同,利用注意力网络给出表达不同模体的注意力权重,连接注意力网络给出节点的向量表示。在解码过程中,通过计算节点间的相似性重构网络。在几个引文合作者网络上的实验结果表明,该方法在两个指标上优于大多数基准算法,有效地提高了网络链路预测的准确度。 展开更多
关键词 链路预测 复杂网络 模体 卷积网络 图自编码器
在线阅读 下载PDF
基于融合变分图注意自编码器的深度聚类模型 被引量:8
15
作者 康雁 寇勇奇 +4 位作者 谢思宇 王飞 张兰 吴志伟 李浩 《计算机科学》 CSCD 北大核心 2021年第S02期81-87,116,共8页
聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息... 聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用。随着深度学习的发展,深度聚类成为一个研究热点。现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习。提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示。在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练。通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征。综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法。 展开更多
关键词 深度聚类 表征学习 自编码器 变分注意自编码器 自监督聚类
在线阅读 下载PDF
结合知识图谱的变分自编码器零样本图像识别 被引量:4
16
作者 张海涛 苏琳 《计算机工程与应用》 CSCD 北大核心 2023年第1期236-243,共8页
近年来,结合生成模型的零样本算法得到了广泛的研究,但此类方法通常仅使用属性注释,缺少类别语义,而单一信息对类别表征能力不够强,容易产生域偏移,影响知识迁移的效果,进而降低分类结果的准确率。为了解决此问题,提出一种结合知识图谱... 近年来,结合生成模型的零样本算法得到了广泛的研究,但此类方法通常仅使用属性注释,缺少类别语义,而单一信息对类别表征能力不够强,容易产生域偏移,影响知识迁移的效果,进而降低分类结果的准确率。为了解决此问题,提出一种结合知识图谱变分自编码器零样本识别算法(KG-VAE),通过构建联合类别分级结构,类别文本描述和词向量的层次结构化知识图谱作为语义信息库,将知识图谱中丰富的语义知识结合到以变分自编码器为基础的生成模型中,使生成的潜在特征更好保留有效的判定性信息,减小域偏移,促进知识迁移。在四个公开的零样本数据集上进行了实验,对比基准方法CADA-VAE,分类平均准确率有一定的提高;同时利用消融实验证明了知识图谱作为语义辅助信息的有效性。 展开更多
关键词 知识 卷积神经网络 变分自编码器 零样本学习 变分自编码器
在线阅读 下载PDF
基于One-Shot聚合自编码器的图表示学习 被引量:2
17
作者 袁立宁 刘钊 《计算机应用》 CSCD 北大核心 2023年第1期8-14,共7页
自编码器(AE)是一种高效的图数据表示学习模型,但大多数图自编码器(GAE)为浅层模型,其效率会随着隐藏层的增加而降低。针对上述问题,提出基于One-Shot聚合(OSA)和指数线性(ELU)函数的GAE模型OSA-GAE和图变分自编码器模型OSA-VGAE。首先... 自编码器(AE)是一种高效的图数据表示学习模型,但大多数图自编码器(GAE)为浅层模型,其效率会随着隐藏层的增加而降低。针对上述问题,提出基于One-Shot聚合(OSA)和指数线性(ELU)函数的GAE模型OSA-GAE和图变分自编码器模型OSA-VGAE。首先,利用多层图卷积网络(GCN)构建编码器,并引入OSA和ELU函数;然后,在解码阶段使用内积解码器恢复图的拓扑结构;此外,为了防止模型训练过程中的参数过拟合,在损失函数中引入正则化项。实验结果表明,OSA和ELU函数可以有效提高深层GAE的性能,改善模型的梯度信息传递。在使用6层GCN时,基准引文数据集PubMed的链接预测任务中,深层OSA-VGAE相较于原始的VGAE在ROC曲线下的面积(AUC)和平均精度(AP)上分别提升了8.67和6.85个百分点,深层OSA-GAE相较于原始的GAE在AP和AUC上分别提升了6.82和4.39个百分点。 展开更多
关键词 自编码器 图自编码器 卷积网络 One-Shot聚合 链接预测
在线阅读 下载PDF
联合ZINB模型与图注意力自编码器的自优化单细胞聚类
18
作者 孔凤玲 吴昊 董庆庆 《计算机科学》 CSCD 北大核心 2023年第12期104-112,共9页
单细胞数据聚类在生物信息分析中具有重要作用,但受测序原理和测序平台的限制,单细胞数据集普遍存在高维稀疏性、高方差噪声和基因数据缺失的问题,导致单细胞数据在聚类分析和应用方面仍面临诸多挑战。现有的单细胞聚类方法主要针对细... 单细胞数据聚类在生物信息分析中具有重要作用,但受测序原理和测序平台的限制,单细胞数据集普遍存在高维稀疏性、高方差噪声和基因数据缺失的问题,导致单细胞数据在聚类分析和应用方面仍面临诸多挑战。现有的单细胞聚类方法主要针对细胞和基因表达间的关系进行建模,忽略了对细胞间潜在特征关系的充分挖掘以及对噪声的去除,导致聚类结果不理想,从而阻碍了后期对数据的分析。针对上述问题,提出了一种联合零膨胀负二项(Zero Inflated Negative Binomial,ZINB)模型与图注意力自编码器的自优化单细胞聚类算法(Self-optimized Single Cell Clustering Using ZINB Model and Graph Attention Autoencoder,scZDGAC)。该算法首先使用ZINB模型并结合可扩展的DCA去噪算法,通过ZINB分布更好地拟合数据特征分布,提升自编码器的去噪性能,并减小噪声和数据丢失对KNN算法输出的影响;然后通过图注意力自编码器在不同权重的细胞之间传播信息,更好地捕获细胞间的潜在特征进行聚类;最后scZDGAC采用自优化的方法使原本两个独立的聚类模块和特征模块相互受益,不断迭代更新聚类中心,进一步提升聚类性能。为了对聚类结果进行评价,文中使用调整兰德指数(ARI)和标准化互信息(NMI)两个通用评价指标。在6个不同规模的单细胞数据集上与其他算法进行对比实验,结果表明,所提聚类算法在聚类性能上较其他方法有很大提高,很好地展现了该算法的鲁棒性。 展开更多
关键词 深度聚类 scRNA-Seq ZINB模型 自优化 DCA 注意力自编码器
在线阅读 下载PDF
基于图嵌入编码形态信息的非均匀多任务强化学习方法
19
作者 贺晓 王文学 《计算机应用研究》 CSCD 北大核心 2024年第4期1022-1028,共7页
传统强化学习方法存在效率低下、泛化性能差、策略模型不可迁移的问题。针对此问题,提出了一种非均匀多任务强化学习方法,通过学习多个强化任务提升效率和泛化性能,将智能体形态构建为图,利用图神经网络能处理任意连接和大小的图来解决... 传统强化学习方法存在效率低下、泛化性能差、策略模型不可迁移的问题。针对此问题,提出了一种非均匀多任务强化学习方法,通过学习多个强化任务提升效率和泛化性能,将智能体形态构建为图,利用图神经网络能处理任意连接和大小的图来解决状态和动作空间维度不同的非均匀任务,突破模型不可迁移的局限,充分发挥图神经网络天然地利用图结构归纳偏差的优点,实现了模型高效训练和泛化性能提升,并可快速迁移到新任务。多任务学习实验结果表明,与以往方法相比,该方法在多任务学习和迁移学习实验中均表现出更好的性能,在迁移学习实验中展现出更准确的知识迁移。通过引入图结构偏差,使该方法具备更高的效率和更好的迁移泛化性能。 展开更多
关键词 多任务强化学习 神经网络 变分图自编码器 形态信息编码 迁移学习
在线阅读 下载PDF
深度图网络驱动的核电系统多级异常检测方法
20
作者 张乐 成玮 +5 位作者 张硕 陈雪峰 常丰田 洪郡滢 马颖菲 彭将 《振动.测试与诊断》 北大核心 2025年第1期88-94,202,共8页
针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结... 针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结构;其次,基于变分图自编码器重构系统图结构,以重构误差来表征系统运行状态,从系统层面防止非线性突发行为带来的安全性问题;然后,通过半监督图卷积节点分类模型识别系统内部各变量运行状态,实现测点级异常检测;最后,以PCTranACP100仿真机2种基准事故工况数据、国内某核电机组循环水系统监测数据来验证提出方法的有效性。结果表明,系统级异常检测准确率达到93%,86%和90%,证明所提出方法能够准确检测出系统异常情况,可降低电厂单一仪表异常触发的非计划停机概率。 展开更多
关键词 核电系统 无监督深度学习 可解释性结构 多级异常检测 变分图自编码器
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部