蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据...蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据集。当前主流的PDB蛋白质数据集虽然是经过实验测得,但没有利用到蛋白质的空间特征,而且存在掺杂核酸数据和部分数据不完整的问题。针对以上问题,从蛋白质的空间结构角度来研究蛋白质的预测。在原始PDB数据集的基础上,提出了河海图结构蛋白质数据集(Hohai Graphic Protein Data Bank,HohaiGPDB)。该数据集以图结构为基础,表达出了蛋白质的空间结构特征。基于传统Transformer网络模型对新的数据集进行了相关的蛋白质结构预测实验,在HohaiGPDB数据集上的预测准确率可以达到59.38%,证明了HohaiGPDB数据集的研究价值。HohaiGPDB数据集可以作为蛋白质相关研究的通用数据集。展开更多
文摘蛋白质是一种具有空间结构的物质。蛋白质结构预测的主要目标是从已有的大规模的蛋白质数据集中提取有效的信息,从而预测自然界中蛋白质的结构。目前蛋白质结构预测实验存在的一个问题是,缺少能够进一步反映出蛋白质空间结构特征的数据集。当前主流的PDB蛋白质数据集虽然是经过实验测得,但没有利用到蛋白质的空间特征,而且存在掺杂核酸数据和部分数据不完整的问题。针对以上问题,从蛋白质的空间结构角度来研究蛋白质的预测。在原始PDB数据集的基础上,提出了河海图结构蛋白质数据集(Hohai Graphic Protein Data Bank,HohaiGPDB)。该数据集以图结构为基础,表达出了蛋白质的空间结构特征。基于传统Transformer网络模型对新的数据集进行了相关的蛋白质结构预测实验,在HohaiGPDB数据集上的预测准确率可以达到59.38%,证明了HohaiGPDB数据集的研究价值。HohaiGPDB数据集可以作为蛋白质相关研究的通用数据集。
文摘现有的基于图神经网络(Graph Neural Network,GNN)的欺诈检测方法还存在三个方面的不足:(1)没有充分考虑到样本标签分布不平衡的问题;(2)没有考虑欺诈者为了躲避检测器的检测,故意制造噪声干扰检测的问题;(3)没有考虑欺诈类型数据联系稀疏问题.为此,本文提出一种基于噪声过滤与特征增强的图神经网络欺诈检测方法NFE-GNN(Noise Filtering and feature Enhancement based Graph Neural Network method for fraud detection)来改善欺诈检测性能.该方法首先基于数据集的欺诈率对样本进行平衡采样;在此基础上,采用一个参数化距离函数计算节点间的相似度,并通过强化学习得到最优的噪声过滤阈值;最后,通过创建欺诈样本间的联系,丰富拓扑信息,以达到增强欺诈类特征嵌入表示的目的.在两个公开数据集上的实验结果表明,本文所提NFE-GNN方法的性能优于目前主流的图神经网络欺诈检测方法.