期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
图卷积算法的研究进展 被引量:1
1
作者 郑睿刚 陈伟福 冯国灿 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期1-14,共14页
近年来,随着科学技术的发展,越来越多的数据以图的形式呈现和存储。图是不规则的数据,具有分散性和无序性,除了节点本身可赋予数据的特征外,边权信息更可以刻画节点间的相似性。虽然传统的深度卷积网络能有效处理图像、视频、语音等规... 近年来,随着科学技术的发展,越来越多的数据以图的形式呈现和存储。图是不规则的数据,具有分散性和无序性,除了节点本身可赋予数据的特征外,边权信息更可以刻画节点间的相似性。虽然传统的深度卷积网络能有效处理图像、视频、语音等规则的数据,但直接用以处理图的数据效果并不理想。如何借鉴传统的卷积算法,提出适应图数据特点的学习算法,是当前深度学习研究的一个热点。文章拟对面向图数据的图卷积算法进行归纳总结,然而由于篇幅有限,无法对所有算法做到面面俱到的介绍,因此文章侧重于介绍模型背后的原理,分析并指出这些算法的优缺点,同时扼要介绍图卷积网络的主要应用。 展开更多
关键词 卷积神经网络 图的拉普拉斯矩阵 图的傅立叶变换 图的卷积变换 图的节点分类 图的分类
在线阅读 下载PDF
半监督学习理论及其研究进展概述 被引量:36
2
作者 屠恩美 杨杰 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第10期1280-1291,共12页
半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问题.半监督学习已... 半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问题.半监督学习已在许多领域被成功应用.回顾了半监督学习的发展历程和主要理论,并介绍了半监督学习研究的最新进展,最后结合应用实例分析了半监督学习在解决实际问题中的重要作用. 展开更多
关键词 机器学习 半监督学习 图的拉普拉斯矩阵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部