期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于图拉普拉斯正则化的PET图像核重建方法
1
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 像重建 核方法 深度像先验 图拉普拉斯正则
在线阅读 下载PDF
稀疏分解和图拉普拉斯正则化的图像前景背景分割方法
2
作者 谭婷芳 蔡万源 蒋俊正 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期979-987,共9页
针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,... 针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,其中图像背景作为平滑分量,由一组图傅里叶变换基函数线性表示,叠加在背景上的前景为稀疏分量,前景像素间的连通性可由图拉普拉斯正则化项进行刻画.将图像前景背景分割问题归结为包含稀疏分解模型和图拉普拉斯正则化项的约束优化问题,采用交替方向乘子法对该优化问题进行求解.实验结果表明,与现有的其他方法相比,所提方法具有更好的分割效果. 展开更多
关键词 信号处理 图拉普拉斯正则 傅里叶变换基函数 稀疏分解 前景背景分割
在线阅读 下载PDF
图拉普拉斯正则化稀疏变换学习图像去噪算法 被引量:7
3
作者 钱冲 常冬霞 《计算机工程与应用》 CSCD 北大核心 2022年第5期232-239,共8页
从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题。为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变... 从噪声图像中恢复干净的图像是对图像进行有效处理与分析的首要前提之一,而去除噪声的同时保持图像的特征则是图像去噪的一个具有挑战性的问题。为了在去除噪声的同时尽量保持图像的局部结构特征,提出了一种基于图拉普拉斯正则化稀疏变换学习的图像去噪算法。通过引入图拉普拉斯正则化对邻域像素进行约束,可以较好地保护相邻像素之间的相关性,从而增强图像的局部平滑性。并且,为了更好地利用图像的非局部信息,在相似图像块度量中引入优化后的稀疏编码,从而寻找到更准确的相似图像块。实验结果表明,无论是在量化指标还是视觉质量上,所提算法均能取得较好的去噪性能。 展开更多
关键词 像去噪 稀疏变换学习 图拉普拉斯正则 局部几何结构 像块匹配
在线阅读 下载PDF
超像素分割和波段分割的高光谱图像去噪
4
作者 李华君 蒋俊正 +1 位作者 周芳 全英汇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期122-135,共14页
针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素... 针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素分割技术,得到一系列的超像素。对超像素内的像素建模为节点,像素之间用边连接,构建一系列下层图,从而充分利用高光谱图像的空间信息和保留边界信息。根据超像素分割结果,沿着波段维分割,形成超像素体,以充分利用高光谱图像的波段相似性。将超像素体建模为节点,超像素体之间用边连接,构建上层图。基于构建的图结构和图分割方式,将高光谱图像去噪问题归结为一系列的优化问题,在优化问题中利用克罗内克乘积图重新定义了图拉普拉斯正则项。最后,实验结果表明,与现有算法相比,文中所提算法具有更高的平均峰值信噪比、平均结构相似性和光谱差异性。 展开更多
关键词 高光谱像去噪 信号处理 超像素分割 波段分割 图拉普拉斯正则
在线阅读 下载PDF
基于双重正则矩阵分解的缺失数据恢复 被引量:4
5
作者 刘歌 芮国胜 田文飚 《系统工程与电子技术》 EI CSCD 北大核心 2021年第5期1191-1197,共7页
针对多源时间序列缺失数据恢复问题,提出一种基于双重正则矩阵分解的恢复方法。该方法在多源时间序列矩阵分解的基础上,利用时间序列的平滑性构建时间序列隐含因子的二阶差分正则项,同时引入反映数据内部结构的图拉普拉斯正则项对传感... 针对多源时间序列缺失数据恢复问题,提出一种基于双重正则矩阵分解的恢复方法。该方法在多源时间序列矩阵分解的基础上,利用时间序列的平滑性构建时间序列隐含因子的二阶差分正则项,同时引入反映数据内部结构的图拉普拉斯正则项对传感器隐含因子进行约束,并在图拉普拉斯矩阵获取过程中设计了一种联合数据本身的相似度和数据变化趋势相似度的双重皮尔逊相似策略,构造数据内部的最相似图。最后,将双正则项统一于矩阵分解的框架中,利用梯度下降法实现目标函数的优化,数据实验中分别采用合成数据和真实数据验证了算法的有效性。 展开更多
关键词 多源时间序列 数据缺失 矩阵分解 图拉普拉斯正则
在线阅读 下载PDF
采用多任务特征融合的脑电情绪识别方法
6
作者 刘柯 黄玉柱 +1 位作者 邓欣 于洪 《智能系统学报》 CSCD 北大核心 2024年第3期610-618,共9页
特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过L_(2,1)范数约束实现稀疏特征选择... 特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过L_(2,1)范数约束实现稀疏特征选择,同时利用图拉普拉斯正则化保持不同子类间的潜在关系。该算法在不揭示真实样本标签的情况下,在子任务空间有效融合脑网络空间拓扑结构信息和微分熵信息,为高精度脑电信号情绪解码提供具有更高情绪表征能力的特征。DEAP和SEED数据集以及本实验室数据集的分析结果表明,该文提出的方法能显著提高脑电情绪解码的精度。 展开更多
关键词 情感脑机接口 脑电情绪识别 脑网络 微分熵 近邻传播聚类 图拉普拉斯正则 多任务特征融合 稀疏特征选择
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部