经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型...经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。展开更多
造斜率的准确预测是进行井眼轨迹调控的基础,直接影响定向井钻井效率,但由于井下力学行为的复杂性,传统预测方法存在一定限制,难以实现精确预测。为此,提出了一种力学-智能模型融合的造斜率预测方法。利用力学模型计算钻头侧向力、钻头...造斜率的准确预测是进行井眼轨迹调控的基础,直接影响定向井钻井效率,但由于井下力学行为的复杂性,传统预测方法存在一定限制,难以实现精确预测。为此,提出了一种力学-智能模型融合的造斜率预测方法。利用力学模型计算钻头侧向力、钻头转角和极限造斜率并作为主控因素,通过自动化机器学习框架联合其他参数进行拟合预测,从而取代传统方法反演经验系数的过程,使其充分发挥力学模型宏观规律描述准确和智能模型非线性拟合能力强的优势。利用新疆玛湖区块14口井数据进行训练和测试。结果显示,融合力学参数后,模型造斜率最大误差、均方根误差和平均绝对误差分别下降了17%、12%和8%,其中均方根误差和平均绝对误差均小于每30 m 1.00°,表明该方法能够有效提升造斜率预测精度,尤其在造斜率急剧变化的井段表现出更优的预测性能。研究结果可为造斜率的准确预测提供新的思路,同时也可为井眼轨迹的精确调控提供一定的技术支撑。展开更多
数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-T...数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-TDS)算法。算法中发电机状态变量与节点注入电流通过数据驱动模型推理计算,并通过网络方程完成节点电压计算,两者交替求解完成仿真。算法提出一种混合驱动范式下的网络代数方程组预处理方法,用以改善仿真的收敛性;算法设计一种中央处理器单元-神经网络处理器单元(central processing unit-neural network processing unit,CPU-NPU)异构计算框架以加速仿真,CPU进行机理模型的微分代数方程求解;NPU作协处理器完成数据驱动模型的前向推理。最后在IEEE-39和Polish-2383系统中将部分或全部发电机替换为数据驱动模型进行验证,仿真结果表明,所提出的仿真算法收敛性好,计算速度快,结果准确。展开更多
科学评估地下空间开发需求潜力是缓解城市化问题和合理拓展有限区域的重要基础工作。目前地下空间评价中的社会经济数据多来自于传统官方文件,其全面完整性和时空精度并不理想;此外主客观赋权方法的使用,一定程度上存在主观性强和受数...科学评估地下空间开发需求潜力是缓解城市化问题和合理拓展有限区域的重要基础工作。目前地下空间评价中的社会经济数据多来自于传统官方文件,其全面完整性和时空精度并不理想;此外主客观赋权方法的使用,一定程度上存在主观性强和受数据干扰等不足。文章以多源大数据支持的指标体系为基础,构建熵权-随机森林耦合的地下空间需求评价模型。该模型基于熵权法确定负样本,将总样本和指标因子导入随机森林算法中,挖掘社会经济指标与现有地下设施间的复杂非线性关系。研究表明,经过网格搜索调优后的模型AUC(area under curve)精度达到0.979,其中77.45%的现有设施落入评价的高需求区内,证明所采用模型有较强的准确性和可靠性,其精细化评价结果可为今后地下建设选址提供更符合实际的借鉴。展开更多
文摘经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。
文摘造斜率的准确预测是进行井眼轨迹调控的基础,直接影响定向井钻井效率,但由于井下力学行为的复杂性,传统预测方法存在一定限制,难以实现精确预测。为此,提出了一种力学-智能模型融合的造斜率预测方法。利用力学模型计算钻头侧向力、钻头转角和极限造斜率并作为主控因素,通过自动化机器学习框架联合其他参数进行拟合预测,从而取代传统方法反演经验系数的过程,使其充分发挥力学模型宏观规律描述准确和智能模型非线性拟合能力强的优势。利用新疆玛湖区块14口井数据进行训练和测试。结果显示,融合力学参数后,模型造斜率最大误差、均方根误差和平均绝对误差分别下降了17%、12%和8%,其中均方根误差和平均绝对误差均小于每30 m 1.00°,表明该方法能够有效提升造斜率预测精度,尤其在造斜率急剧变化的井段表现出更优的预测性能。研究结果可为造斜率的准确预测提供新的思路,同时也可为井眼轨迹的精确调控提供一定的技术支撑。
文摘科学评估地下空间开发需求潜力是缓解城市化问题和合理拓展有限区域的重要基础工作。目前地下空间评价中的社会经济数据多来自于传统官方文件,其全面完整性和时空精度并不理想;此外主客观赋权方法的使用,一定程度上存在主观性强和受数据干扰等不足。文章以多源大数据支持的指标体系为基础,构建熵权-随机森林耦合的地下空间需求评价模型。该模型基于熵权法确定负样本,将总样本和指标因子导入随机森林算法中,挖掘社会经济指标与现有地下设施间的复杂非线性关系。研究表明,经过网格搜索调优后的模型AUC(area under curve)精度达到0.979,其中77.45%的现有设施落入评价的高需求区内,证明所采用模型有较强的准确性和可靠性,其精细化评价结果可为今后地下建设选址提供更符合实际的借鉴。