期刊文献+
共找到1,064篇文章
< 1 2 54 >
每页显示 20 50 100
SSGCN-混合式图卷积网络:用于三维CAD模型的加工特征识别
1
作者 王洪申 王尚旭 强会英 《机械科学与技术》 北大核心 2025年第1期30-39,共10页
为解决CAD/CAPP/CAM集成过程中,三维CAD模型加工特征识别问题,提出了一种混合式图卷积网络(Hybrid spectral domain and spatial domain graph convolution networks, SSGCN)的特征识别算法。以三维模型的面为节点,边为节点间的连接关系... 为解决CAD/CAPP/CAM集成过程中,三维CAD模型加工特征识别问题,提出了一种混合式图卷积网络(Hybrid spectral domain and spatial domain graph convolution networks, SSGCN)的特征识别算法。以三维模型的面为节点,边为节点间的连接关系,构建图数据结构。提取面的几何属性信息,自定义编码构建节点属性矩阵,作为网络的输入。提取图结构的邻接矩阵、度矩阵等构建混合式图卷积网络。通过Python-OCC相关算法以及布尔运算,设计了一种批量生成带有面标签的加工特征模型数据集算法。使用带有面标签的加工特征模型数据集对网络进行训练,对加工特征模型进行测试,得到很好的识别效果。 展开更多
关键词 CAD模型 图卷网络 加工特征识别 邻接矩阵
在线阅读 下载PDF
基于Transformer和多关系图卷积网络的行人轨迹预测 被引量:1
2
作者 刘桂红 周宗润 孟祥福 《计算机科学与探索》 北大核心 2025年第5期1353-1364,共12页
在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题... 在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题,提出了一种基于Transformer和多关系图卷积网络(GCN)的行人轨迹预测模型。该模型由交互捕获模块、锚点控制模块和轨迹修正补全模块构成。交互捕获模块由T-Transformer和多关系图卷积网络组成,分别提取每个行人在时间序列和空间序列上的运动特征,并结合锚点控制模块推断行人的中间目的地以减少递归累计误差,由修正补全模块进行最终轨迹细化。在提取特征时添加逆关系可得到更为优化的结果,使用高斯剪枝减少虚假路径的生成也可提高模型效率。在ETH与UCY数据集上的实验结果表明,在平均位移误差(ADE)和最终位移误差(FDE)方面,该模型具有比现有大部分主流模型更好的性能。由于该模型在行人轨迹预测上的出色性能,可避免不必要的轨迹变更和碰撞风险,为行人轨迹预测应用提供了更为可能的解决方案。 展开更多
关键词 T-Transformer 图卷网络(gcn) 锚点控制 行人轨迹预测
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
3
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷网络 注意力机制
在线阅读 下载PDF
基于级联残差图卷积网络的多行为推荐
4
作者 党伟超 宋楚君 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第4期1223-1231,共9页
针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入... 针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。 展开更多
关键词 多行为推荐 级联残差 图卷网络 聚合策略 多任务学习
在线阅读 下载PDF
基于功能性脑网络和图卷积网络的驾驶疲劳检测
5
作者 徐军莉 《汽车安全与节能学报》 北大核心 2025年第2期226-233,共8页
为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图... 为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图特征进行学习优化,实现检测分类。结果表明:该模型检测的准确率可以达到88.90%;利用度中心性发现脑网络中的14个重要电极,其中基于7个重要电极构建的GCN模型检测的准确率为87.2%,检测速度更快,综合性能优于基于30导的检测模型。 展开更多
关键词 图卷网络(gcn) 功能性脑网络(FBN) 简化通道 驾驶疲劳
在线阅读 下载PDF
基于关系图卷积神经网络的跨句实体关系抽取
6
作者 陈千 关春祥 +1 位作者 郭鑫 王素格 《中文信息学报》 北大核心 2025年第7期62-71,共10页
相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究... 相对于句子级关系抽取,涉及关系的实体存在于多个句子中的情况在实际场景中更常见。因此篇章级关系抽取逐渐成为近年来信息抽取领域的研究热点。为了充分利用上下文信息和篇章结构信息,该文采用实体嵌入表示和实体间的显式结构关系研究跨句实体关系抽取。首先,对篇章进行编码和构图;进而,使用关系图卷积神经网络对图节点进行更新,并利用融合篇章全局信息的节点嵌入表示更新边嵌入表示;最后,该模型使用一种迭代算法完成边信息的推理,实现跨句实体关系抽取。实验结果表明,相比基线模型,在CDR和GDA数据集上的跨句实体关系抽取性能得到了显著提高。 展开更多
关键词 关系图卷神经网络 跨句实体关系抽取 实体嵌入
在线阅读 下载PDF
基于K近邻算法的数据融合与改进图卷积神经网络的电机轴承故障诊断
7
作者 孙丽玲 唐李昱 许伯强 《电机与控制学报》 北大核心 2025年第5期12-18,共7页
为了解决单一类型数据对电机轴承故障诊断准确率不高和图卷积神经网络具有过平滑现象的问题,提出一种多数据融合和改进图卷积神经网络的电机轴承故障诊断方法。首先,通过快速傅里叶变换将电机轴承的振动信号和电机电流信号分别转换为频... 为了解决单一类型数据对电机轴承故障诊断准确率不高和图卷积神经网络具有过平滑现象的问题,提出一种多数据融合和改进图卷积神经网络的电机轴承故障诊断方法。首先,通过快速傅里叶变换将电机轴承的振动信号和电机电流信号分别转换为频域信号;然后,将每一个频率视为一个结点,对应的振动和电流信号视为节点特征,根据K近邻图构造法,将振动信号和电流信号融合成图结构数据;进而,将图数据输入通过添加初始残差连接模块而改进的图卷积神经网络进行训练,从而得到诊断结果。在帕德博恩数据集上,将所提方法和多种模型进行电机轴承故障诊断对比实验,实验结果表明,所提模型的故障识别准确率能达到98.6%,优于对比方法,证明所提数据融合方法与改进图卷积神经网络是有效的。 展开更多
关键词 深度学习 故障诊断 图卷神经网络 电机轴承 快速傅里叶变换 数据融合 电流数据
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
8
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷网络(Fast-gcn)
在线阅读 下载PDF
基于双向多视角关系图卷积网络的论辩对抽取方法
9
作者 张虎 吴增泰 王宇杰 《自动化学报》 北大核心 2025年第6期1290-1304,共15页
论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细... 论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细粒度语义逻辑信息的显式建模上仍存在不足,且未充分考虑两个段落间复杂的上下文感知交互关系.基于此,提出一种双向多视角关系图卷积网络.首先,从段落内、依存语法和段落间视角分别构建论点关系图,利用图结构表示文本的逻辑结构和语义交互关系,为模型提供丰富的上下文语义信息.然后,通过引入多视角关系图卷积和图匹配模块,在两个段落之间进行双向交互,充分利用不同层次的论点间互动关系,增强模型对跨段落论点间语义联系的捕捉能力和论点关系的识别精度.实验结果表明,相较于基线模型,该方法在性能上有了显著提升. 展开更多
关键词 论辩对抽取 图卷网络 论辩挖掘 多视角关系图
在线阅读 下载PDF
基于图卷积神经网络的露天矿车道路边界检测算法
10
作者 秦学斌 许爱珍 周毓凡 《金属矿山》 北大核心 2025年第3期181-188,共8页
由于矿山道路没有路肩且道路边界线十分模糊,因此区分道路边界线之内的可行驶区域与边界线以外的非可行驶区域成为亟待解决的问题。为提升露天矿车行驶的安全性,提出了一种基于图卷积神经网络的露天矿车道路边界检测算法。首先利用kd-t... 由于矿山道路没有路肩且道路边界线十分模糊,因此区分道路边界线之内的可行驶区域与边界线以外的非可行驶区域成为亟待解决的问题。为提升露天矿车行驶的安全性,提出了一种基于图卷积神经网络的露天矿车道路边界检测算法。首先利用kd-tree算法和基于体素化的八叉树滤波算法构成的复合索引结构对点云数据进行精简和滤波,剔除点云数据中的异常点和高噪声点;再通过基于K-means聚类对精简后的点云数据进行图卷积神经网络运算提取出地面点,非地面点通过聚类方法寻找邻域构成三角面,利用三角面的法向量拟合非地面即得到曲面;最后计算拟合最优地面和非地面的交线即为所求的道路边界线。试验结果表明:提出的道路边界检测算法能很好地检测出边界线,为矿山道路无人驾驶提供安全范围,有助于提升无人运行矿车驾驶的安全性。 展开更多
关键词 点云滤波 kd-tree算法 K-MEANS聚类 图卷网络 边界线检测
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
11
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷网络 模糊熵
在线阅读 下载PDF
双重图卷积神经网络驱动的隐藏社区发现算法
12
作者 王小刚 刘旭 《计算机工程与应用》 北大核心 2025年第13期329-337,共9页
隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用... 隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用仍显不足,为解决这一问题,提出了一种基于双重图卷积神经网络(GCN)联合优化隐藏社区发现算法——HCDGCN(hidden community detection based on dual GCN)。HCDGCN融合节点局部和全局结构特征,通过两个GCN共同迭代优化一个损失函数,并逐步削弱权重,使得弱关系社区变得清晰可见,实现了隐藏社区发现。在真实数据集上的实验结果表明,HCDGCN在隐藏社区发现方面优于现有基准方法,实现了更快的收敛速度和更优的社区划分。 展开更多
关键词 社区发现 隐藏社区发现 图卷神经网络 联合优化
在线阅读 下载PDF
基于图卷积网络的室内Wi-Fi指纹定位算法
13
作者 康晓非 梁琪悦 李雨玫 《计算机工程与设计》 北大核心 2025年第8期2157-2162,共6页
针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵... 针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵建立图结构;在参考点(reference point,RP)层面,使用K近邻(K-nearest neighbor,KNN)选取邻近节点构建子图,并通过GCN分别对图结构特征提取,位置预测由全连接层(fully connected layer,FC)完成。实验结果表明,所提算法在自建数据集和公共数据集上的定位性能均优于传统算法,实现了平均定位误差为0.85 m的精度。 展开更多
关键词 室内定位 位置指纹 图结构 邻接矩阵 图卷网络 最近邻算法 接收信号强度
在线阅读 下载PDF
双特征增强的图卷积网络用于方面级情感分析
14
作者 夏敏捷 师钰博 樊银亭 《计算机工程与设计》 北大核心 2025年第8期2426-2433,共8页
针对目前方面级情感分析存在句法依赖解析结果不准确、句法和语义信息没有充分利用的问题,提出一种双特征增强的图卷积网络。利用句法解析器中的依赖概率矩阵作为图卷积网络的邻接矩阵,减小解析结果的不准确性,对初始句法信息进行上下... 针对目前方面级情感分析存在句法依赖解析结果不准确、句法和语义信息没有充分利用的问题,提出一种双特征增强的图卷积网络。利用句法解析器中的依赖概率矩阵作为图卷积网络的邻接矩阵,减小解析结果的不准确性,对初始句法信息进行上下文动态加权增强提取句法信息的能力,对于语义信息,采用多头注意力机制构建动态语义图卷积网络,充分利用语义空间信息。实验结果表明,与基线模型相比模型取得了较明显的性能提升。 展开更多
关键词 方面级情感分析 图卷神经网络 多头注意力机制 概率矩阵 句法 语义 依赖树
在线阅读 下载PDF
基于结构多维特征构建图卷积神经网络的结构损伤识别方法
15
作者 杨建辉 赵清瑄 蒲脯林 《湖南大学学报(自然科学版)》 北大核心 2025年第8期158-171,共14页
以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征... 以数据为驱动的深度学习结构损伤识别(structural damage identification,SDI)效果受结构复杂程度、模型构建方法及数据规模等因素影响较大.本文引入图卷积神经网络(graph convolutional neural network,GCN)以整合结构节点间的属性特征,从图的视角挖掘节点间的复杂属性关系,为SDI提供多维度学习信息.为此,设计了一种融合结构多维特征的图卷积神经网络模型(graph convolutional neural network integrating multi-dimensional features of structure,S-GCN),基于结构振动数据构造损伤特征矩阵,并通过衍生图网络,以图的节点和边表征结构节点的连接关系,构建边索引矩阵,将结构损伤状态、振动数据及节点属性等多维特征信息输入GCN进行结构损伤特征提取及预测识别,探索结构多维特征信息驱动下的GCN在损伤预测中的应用效果.通过两个钢结构验证方法的可行性及有效性,结果表明,S-GCN能够整合结构多维特征信息,对两个结构对象均实现了较高的损伤预测准确性,并展现出良好的噪声鲁棒性.进一步的对比分析显示,相较于三种非GCN模型,S-GCN能够高效地依托节点间关系快速更新节点特征并预测节点损伤状态,其损伤识别准确率、计算效率及网络各层演进过程均优于对比模型,验证了在结构损伤识别中融合结构空间特征的有效性. 展开更多
关键词 结构损伤识别 图卷神经网络 结构多维特征融合 噪声鲁棒性 训练效率
在线阅读 下载PDF
时–空特征驱动的多轮次重构图卷积网络故障诊断方法 被引量:1
16
作者 王庆昕 张先杰 +3 位作者 张海峰 钟凯 陈宏田 韩敏 《控制理论与应用》 北大核心 2025年第1期149-157,共9页
近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出... 近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性. 展开更多
关键词 故障诊断 时空特征 多轮次图重构 图卷网络
在线阅读 下载PDF
基于双通道图卷积网络的人体行为识别方法 被引量:1
17
作者 商樊淇 李志新 +3 位作者 郇战 陈瑛 王永松 梁久祯 《传感器与微系统》 北大核心 2025年第3期138-142,共5页
通过可穿戴传感器识别人体行为受到了广泛关注。现有的方法忽略了个体行为数据之间的潜在关系,尤其不能处理类内差异和类间相似的问题。为了解决这一限制,本文提出了具有特征相似性和个人特点的双通道混合图卷积网络(GCN)。一个通道通... 通过可穿戴传感器识别人体行为受到了广泛关注。现有的方法忽略了个体行为数据之间的潜在关系,尤其不能处理类内差异和类间相似的问题。为了解决这一限制,本文提出了具有特征相似性和个人特点的双通道混合图卷积网络(GCN)。一个通道通过特征图收集相似的活动信息,另一个通道根据个人特征图挖掘个人习惯对人类活动的内在影响。考虑到不同数据分布的差异,引入自注意机制对双通道进行加权,并根据不同的输入数据自适应调整两种拓扑的重要性,以提高网络的泛化性能。为了评估所提出的模型的性能,在UCI-HAR和WISDM数据集上进行了实验验证。结果表明:HSP-GCN的性能优于对比神经网络,F1分别为98.4%和96.5%,与现有工作相比有显著提高。 展开更多
关键词 深度学习 人体行为识别 图卷神经网络
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断 被引量:1
18
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 神经网络 图卷网络 故障诊断
在线阅读 下载PDF
噪声环境下基于域对抗图卷积网络和坐标注意力的说话人确认方法 被引量:1
19
作者 陈家辉 葛子瑞 +2 位作者 王天朗 郭海燕 杨震 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期57-67,共11页
为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。... 为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。首先,针对噪声环境下局部特征变得不稳定这个问题,提出引入CA模块,将全局时间信息和全局频率信息编码到通道注意力中,以强调有用通道,提取鲁棒性的说话人特征。其次,提出构建DA⁃GCN来辅助主网络提取与噪声相关性更小的说话人特征来进行后续的分类。具体而言,将语音信号映射为图信号,利用GCN分别对干净语音图信号特征和含噪语音图信号特征进行聚合,通过域对抗(Domain Adversarial,DA)训练,辅助主网络提取干净语音域和含噪语音域共享的说话人特征,从而降低噪声对SV性能的影响。在VoxCeleb1数据集上的实验结果表明,所提CA⁃DA⁃GCN的性能优于基线模型ExU⁃Net且表现出良好的泛化能力。 展开更多
关键词 噪声环境 说话人确认 域对抗 坐标注意力机制 图卷神经网络
在线阅读 下载PDF
基于多层超图卷积神经网络的故障诊断方法
20
作者 张元东 张先杰 +1 位作者 张若楠 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第1期131-137,共7页
机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法... 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。 展开更多
关键词 超图神经网络(HGNN) 图卷网络(gcn) 多层超图 故障诊断
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部