期刊文献+
共找到1,066篇文章
< 1 2 54 >
每页显示 20 50 100
基于Transformer和多关系图卷积网络的行人轨迹预测 被引量:3
1
作者 刘桂红 周宗润 孟祥福 《计算机科学与探索》 北大核心 2025年第5期1353-1364,共12页
在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题... 在自动导航应用领域,行人轨迹相对复杂,有效且合理地预测行人未来轨迹对自动驾驶和出行安全至关重要。行人轨迹随机性和动态性极高且与交通环境有着复杂相互作用,因此需要对行人的时间依赖性和空间相互作用进行合理建模。为了解决该问题,提出了一种基于Transformer和多关系图卷积网络(GCN)的行人轨迹预测模型。该模型由交互捕获模块、锚点控制模块和轨迹修正补全模块构成。交互捕获模块由T-Transformer和多关系图卷积网络组成,分别提取每个行人在时间序列和空间序列上的运动特征,并结合锚点控制模块推断行人的中间目的地以减少递归累计误差,由修正补全模块进行最终轨迹细化。在提取特征时添加逆关系可得到更为优化的结果,使用高斯剪枝减少虚假路径的生成也可提高模型效率。在ETH与UCY数据集上的实验结果表明,在平均位移误差(ADE)和最终位移误差(FDE)方面,该模型具有比现有大部分主流模型更好的性能。由于该模型在行人轨迹预测上的出色性能,可避免不必要的轨迹变更和碰撞风险,为行人轨迹预测应用提供了更为可能的解决方案。 展开更多
关键词 T-Transformer 图卷积网络(GCN) 锚点控制 行人轨迹预测
在线阅读 下载PDF
基于通道自注意图卷积网络的运动想象脑电分类实验 被引量:1
2
作者 孟明 张帅斌 +2 位作者 高云园 佘青山 范影乐 《实验技术与管理》 北大核心 2025年第2期73-80,共8页
该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer ... 该文将运动想象脑电分类任务设计成应用型教学实验。针对传统图卷积网络(graph convolutional neural networks,GCN)无法建模脑电通道间动态关系问题,提出一种融合通道注意机制的多层图卷积网络模型(channel self-attention multilayer GCN,CAMGCN)。首先,CAMGCN计算脑电信号各个通道间的皮尔逊相关系数进行图建模,并通过通道位置编码模块学习通道间关系。然后将得到的时域和频域特征分量通过通道自注意图嵌入模块进行图嵌入,得到图数据。最后通过多级GCN模块提取并融合多层次拓扑信息,得出分类结果。CAMGCN深化了模型在自适应学习通道间动态关系的能力,并在结构方面提高了自注意机制与图数据的适配性。该模型在BCI Competition-Ⅳ2a数据集上的准确率达到83.8%,能够有效实现对运动想象任务的分类。该实验有助于增进学生对于深度学习和脑机接口的理解,培养创新思维,提高科研素质。 展开更多
关键词 脑机接口 脑电图 图卷积网络 注意力机制
在线阅读 下载PDF
利用可选择多尺度图卷积网络的骨架行为识别
3
作者 曹毅 李杰 +2 位作者 叶培涛 王彦雯 吕贤海 《电子与信息学报》 北大核心 2025年第3期839-849,共11页
针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其... 针对目前骨架行为识别方法忽视骨架关节点多尺度依赖关系和无法合理利用卷积核进行时间建模的问题,该文提出了一种可选择多尺度图卷积网络(SMS-GCN)的行为识别模型。首先,介绍了人体骨架图的构建原理和通道拓扑细化图卷积网络的结构;其次,构建成对关节邻接矩阵和多关节邻接矩阵以生成多尺度通道拓扑细化邻接矩阵,并引入图卷积网络,进一步提出多尺度图卷积(MS-GC)模块,以期实现对骨架关节点的多尺度依赖关系的建模;然后,基于多尺度时序卷积和可选择大核网络,提出可选择多尺度时序卷积(SMS-TC)模块,以期实现对有用的时间上下文特征的充分提取,同时结合MS-GC和SMS-TC模块,进而提出可选择多尺度图卷积网络模型并在多支流数据输入下进行训练;最后,在NTU-RGB+D和NTU-RGB+D 120数据集上进行大量实验,实验结果表明,该模型能够捕获更多的关节特征和学习有用的时间信息,具有优异的准确率和泛化能力。 展开更多
关键词 骨架行为识别 图卷积网络 多尺度通道拓扑细化邻接矩阵 可选择多尺度时序卷 可选择多尺度图卷积网络
在线阅读 下载PDF
基于时空图卷积网络的智能学习诊断模型
4
作者 王志锋 沈嘉良 +3 位作者 侯玉林 严文星 罗恒 左明章 《华中师范大学学报(自然科学版)》 北大核心 2025年第5期730-742,共13页
智能学习诊断是智慧教育平台中的核心任务,它通过分析学习者的答题记录来评估并预测其知识状态,实现个性化学习支持.然而,现有模型往往忽略答题序列中的知识结构信息,无法将学习状态细化至各个知识点,也难以揭示知识掌握的传播路径.针... 智能学习诊断是智慧教育平台中的核心任务,它通过分析学习者的答题记录来评估并预测其知识状态,实现个性化学习支持.然而,现有模型往往忽略答题序列中的知识结构信息,无法将学习状态细化至各个知识点,也难以揭示知识掌握的传播路径.针对上述不足,本文提出了一种基于时空图卷积网络的智能学习诊断模型:首先融入学科知识结构,将知识点视为相互关联的节点;然后利用时空图卷积网络同时建模答题记录的时序特性与知识结构的空间特性,动态刻画学习者知识状态的演变过程;最后生成具有更好可解释性和更高精度的诊断结果.实验证明,所提模型在三个真实数据集上的诊断性能显著优于现有主流模型. 展开更多
关键词 智慧教育 人工智能 学习诊断 图卷积网络 可解释性
在线阅读 下载PDF
基于级联残差图卷积网络的多行为推荐
5
作者 党伟超 宋楚君 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第4期1223-1231,共9页
针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入... 针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。 展开更多
关键词 多行为推荐 级联残差 图卷积网络 聚合策略 多任务学习
在线阅读 下载PDF
基于引导图卷积网络的人体动作轮廓动态识别
6
作者 鲁光男 李柯景 岳莉 《现代电子技术》 北大核心 2025年第21期101-104,共4页
为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;... 为捕捉节点信号随时间的演变规律,准确预测人体动作,提升人员安全性,文中提出基于引导图卷积网络的人体动作轮廓动态识别方法,全面地理解人体动作的动态变化。利用OpenPose模型获取动作视频中人体各个关节点的位置,构建人体动作骨架图;建立跨时空图结构,描述不同视频帧人体关键点之间的时间依赖关系,设计多尺度邻接矩阵,捕捉人体动作的跨时空相关性;引入注意力机制对不同尺度的邻接矩阵进行权重分配,确定关键关节点间的关系;基于频谱图理论对人体骨架时空图进行时空卷积操作,深入挖掘空间维度上的信号关联性,并捕捉节点信号随时间的演变,通过全连接层进行降维和激活函数处理,输出人体动作轮廓动态识别结果。结果表明:文中方法能够有效地捕捉人体动作的时空特征,对于不同场景下和不同复杂程度的动作类型,该方法的人体动作轮廓动态识别准确性均在90%以上,证明所提方法具有较高的准确性和鲁棒性。 展开更多
关键词 OpenPose模型 图卷积网络 注意力机制 频谱图理论 人体骨架时空图 时空特性
在线阅读 下载PDF
SSGCN-混合式图卷积网络:用于三维CAD模型的加工特征识别
7
作者 王洪申 王尚旭 强会英 《机械科学与技术》 北大核心 2025年第1期30-39,共10页
为解决CAD/CAPP/CAM集成过程中,三维CAD模型加工特征识别问题,提出了一种混合式图卷积网络(Hybrid spectral domain and spatial domain graph convolution networks, SSGCN)的特征识别算法。以三维模型的面为节点,边为节点间的连接关系... 为解决CAD/CAPP/CAM集成过程中,三维CAD模型加工特征识别问题,提出了一种混合式图卷积网络(Hybrid spectral domain and spatial domain graph convolution networks, SSGCN)的特征识别算法。以三维模型的面为节点,边为节点间的连接关系,构建图数据结构。提取面的几何属性信息,自定义编码构建节点属性矩阵,作为网络的输入。提取图结构的邻接矩阵、度矩阵等构建混合式图卷积网络。通过Python-OCC相关算法以及布尔运算,设计了一种批量生成带有面标签的加工特征模型数据集算法。使用带有面标签的加工特征模型数据集对网络进行训练,对加工特征模型进行测试,得到很好的识别效果。 展开更多
关键词 CAD模型 图卷积网络 加工特征识别 邻接矩阵
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
8
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
基于图卷积网络的室内Wi-Fi指纹定位算法
9
作者 康晓非 梁琪悦 李雨玫 《计算机工程与设计》 北大核心 2025年第8期2157-2162,共6页
针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵... 针对传统室内定位算法未考虑指纹数据非欧几里德特征的问题,提出一种基于图卷积网络(graph convolutional neural network,GCN)双层特征提取的Wi-Fi指纹室内定位算法(DuGCNLoc)。该算法在接入点(access point,AP)层面通过设计邻接矩阵建立图结构;在参考点(reference point,RP)层面,使用K近邻(K-nearest neighbor,KNN)选取邻近节点构建子图,并通过GCN分别对图结构特征提取,位置预测由全连接层(fully connected layer,FC)完成。实验结果表明,所提算法在自建数据集和公共数据集上的定位性能均优于传统算法,实现了平均定位误差为0.85 m的精度。 展开更多
关键词 室内定位 位置指纹 图结构 邻接矩阵 图卷积网络 最近邻算法 接收信号强度
在线阅读 下载PDF
基于CEEMDAN和频谱时间图卷积网络的电力负荷预测方法
10
作者 朱莉 夏禹 +1 位作者 朱春强 邓凡 《计算机工程》 北大核心 2025年第4期339-349,共11页
针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首... 针对电力负荷数据存在非平稳性且传统预测模型不能精确获取时序负荷数据的空间相关性和时间依赖性,导致预测精度低的问题,设计并实现一种基于完全集成经验模式分解的自适应噪声完备性(CEEMDAN)和频谱图卷积网络的电力负荷预测方法。首先使用CEEMDAN将目标负荷序列分解为多个本征模态分量(IMF),通过计算模糊熵对IMF进行重构;然后使用频谱时间图卷积网络对重构后分量的空间相关性和时间依赖性进行挖掘,得到各分量的预测结果;最后将各分量的预测结果线性相加得到最终预测结果。实验结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差3个评价指标分别达到了0.72 KW、0.89 KW、0.92%,相较于对比模型StemGnn、TCN、LSTM、Informer、FEDformer,预测精度分别提高了37.9%、17.2%、20.8%、22.5%、12.1%。证明本文所提出的预测方法可以有效降低非平稳性对预测结果的影响,精确获取时序负荷数据的空间相关性和时间依赖性,提高预测精度。 展开更多
关键词 电力负荷预测 经验模态分解 本征模态分量 图卷积网络 模糊熵
在线阅读 下载PDF
基于双向多视角关系图卷积网络的论辩对抽取方法
11
作者 张虎 吴增泰 王宇杰 《自动化学报》 北大核心 2025年第6期1290-1304,共15页
论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细... 论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细粒度语义逻辑信息的显式建模上仍存在不足,且未充分考虑两个段落间复杂的上下文感知交互关系.基于此,提出一种双向多视角关系图卷积网络.首先,从段落内、依存语法和段落间视角分别构建论点关系图,利用图结构表示文本的逻辑结构和语义交互关系,为模型提供丰富的上下文语义信息.然后,通过引入多视角关系图卷积和图匹配模块,在两个段落之间进行双向交互,充分利用不同层次的论点间互动关系,增强模型对跨段落论点间语义联系的捕捉能力和论点关系的识别精度.实验结果表明,相较于基线模型,该方法在性能上有了显著提升. 展开更多
关键词 论辩对抽取 图卷积网络 论辩挖掘 多视角关系图
在线阅读 下载PDF
基于功能性脑网络和图卷积网络的驾驶疲劳检测
12
作者 徐军莉 《汽车安全与节能学报》 北大核心 2025年第2期226-233,共8页
为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图... 为了解决在疲劳检测中构建功能性脑网络(FBN)时,设置阈值标准较为模糊的问题,该文提出设置固定阈值,采用图卷积网络(GCN)来优化学习脑网络图特征。文中在构建FBN时设置阈值为0.5,提取脑网络的度和聚类系数特征,并输入GCN模型,模型对图特征进行学习优化,实现检测分类。结果表明:该模型检测的准确率可以达到88.90%;利用度中心性发现脑网络中的14个重要电极,其中基于7个重要电极构建的GCN模型检测的准确率为87.2%,检测速度更快,综合性能优于基于30导的检测模型。 展开更多
关键词 图卷积网络(GCN) 功能性脑网络(FBN) 简化通道 驾驶疲劳
在线阅读 下载PDF
时–空特征驱动的多轮次重构图卷积网络故障诊断方法 被引量:3
13
作者 王庆昕 张先杰 +3 位作者 张海峰 钟凯 陈宏田 韩敏 《控制理论与应用》 北大核心 2025年第1期149-157,共9页
近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出... 近年来,图神经网络被广泛应用于处理具有非欧结构的工业过程数据.然而由于设备运行的过程数据常常受到噪声和冗余信息的干扰,如果直接使用原始信号会导致构建的图模型不够精细和准确,从而影响后续的模型诊断性能.针对这一问题,本文提出了一种时–空特征驱动的多轮次重构图卷积网络(STMR-GCN)故障诊断方法.该方法首先利用多尺度卷积神经网络与GCN对故障信号进行特征提取.然后根据样本之间的余弦相似性对图结构进行多次重构,重构后的图模型能够更精确地反映样本之间的连边关系,并将得到的图模型输入到GCN进行故障种类的识别.最后,在东南大学(SEU)仿真数据集和真实的磨煤机数据集上进行实验,实验结果表明所提方法与其他对比方法相比诊断精度均有提高,从而证明STMR-GCN模型在故障诊断方面的有效性和实用性. 展开更多
关键词 故障诊断 时空特征 多轮次图重构 图卷积网络
在线阅读 下载PDF
基于卷积神经网络与图卷积网络的水力机械故障诊断 被引量:1
14
作者 吴学春 夏臣智 +4 位作者 肖湘曲 李超顺 李英玉 莫兆祥 吴韬为 《中国农村水利水电》 北大核心 2025年第2期143-147,共5页
水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械... 水力机械设备在当前国民生产中扮演着重要角色,其安全稳定运行至关重要。针对单一深度特征难以有效反映机组故障信息的难题,提出了基于卷积神经网络与图卷积网络特征融合的水力机械设备故障诊断模型。首先利用卷积神经网络获取水力机械设备监测信号卷积深度特征,同时利用快速傅里叶变换获取监测信号频谱值,构建监测信号图数据,建立图卷积网络提取样本关联特征。然后利用注意力机制对不同类型特征进行加权求和实现多模态特征融合。最后利用全连接层实现设备的故障诊断。通过水电机组、水泵主机组故障实测数据以及轴承故障数据进行验证,结果表明所提模型能有效实现水力机械设备故障诊断。 展开更多
关键词 水力机械 神经网络 图卷积网络 故障诊断
在线阅读 下载PDF
基于双通道图卷积网络的多模态方面级情感分析
15
作者 张凤 邵玉斌 +2 位作者 杜庆治 龙华 马迪南 《计算机工程与科学》 北大核心 2025年第7期1321-1330,共10页
针对在多模态方面级情感分析任务中,传统方法主要关注图文模态交互的深层信息而较少关注图像和文本中与方面相关的浅层信息,导致引入与方面无关的噪声,使得模型在捕获方面与情感之间复杂关系的能力上受到限制的问题,提出一种双通道图卷... 针对在多模态方面级情感分析任务中,传统方法主要关注图文模态交互的深层信息而较少关注图像和文本中与方面相关的浅层信息,导致引入与方面无关的噪声,使得模型在捕获方面与情感之间复杂关系的能力上受到限制的问题,提出一种双通道图卷积网络模型DCGCN。在BART模型的结构上,利用注意力机制增强方面语义,通过图卷积网络获取方面增强的多模态特征,并将句法依赖、基于方面的位置依赖和方面增强的图文相关性信息聚合到GCN邻接权重矩阵中以获得感知多信息的多模态特征。实验表明,所提DCGCN模型在Twitter的2个数据集上的F_(1)值分别达到了67.4%和67.9%,提高了多模态方面级情感分析的性能。 展开更多
关键词 方面级情感分析 多模态 图卷积网络 句法依赖 注意力机制
在线阅读 下载PDF
双向特征图增强的图卷积网络算法
16
作者 李梦茜 高心丹 李雪 《计算机科学》 北大核心 2025年第7期127-134,共8页
图卷积神经网络算法在图结构数据的处理中起着至关重要的作用。现有图卷积网络的主流模式是基于拉普拉斯矩阵对节点特征进行加权求和,更侧重于对卷积聚合方式进行优化,忽略了图数据自身的先验信息。为充分挖掘图数据背后所蕴涵的丰富属... 图卷积神经网络算法在图结构数据的处理中起着至关重要的作用。现有图卷积网络的主流模式是基于拉普拉斯矩阵对节点特征进行加权求和,更侧重于对卷积聚合方式进行优化,忽略了图数据自身的先验信息。为充分挖掘图数据背后所蕴涵的丰富属性与结构信息,有效降低图数据中的噪音比例,提出双向特征图增强的图卷积网络算法,通过节点度和相似度计算增强图数据的拓扑空间特征和属性空间特征,然后将两种增强的图特征表示同时在拓扑空间和属性空间中传播,并利用注意力机制自适应融合学习到的嵌入。此外,针对深度图卷积神经网络易发生过平滑的问题,提出一种多输入残差结构,将初始残差和高阶邻域残差相结合,以实现模型在任意卷积层对初始特征和高阶邻域特征的均衡提取。在3个公共数据集上进行实验,结果表明该网络比现有网络具有更好的分类性能。 展开更多
关键词 图卷积网络 图注意力网络 图数据增强 特征提取 节点分类
在线阅读 下载PDF
基于对比学习的简化图卷积网络推荐算法
17
作者 于雨晨 吴斯琦 +2 位作者 赵清华 吴旭红 王雷 《太原理工大学学报》 北大核心 2025年第3期485-494,共10页
【目的】针对现有的图卷积网络推荐模型存在的模型收敛效率低、过度平滑、高度节点影响表示学习导致长尾项目推荐效果差等问题,提出基于对比学习的简化图卷积网络推荐算法(SGCN-CL)。【方法】算法采用自监督学习方法为用户项目节点生成... 【目的】针对现有的图卷积网络推荐模型存在的模型收敛效率低、过度平滑、高度节点影响表示学习导致长尾项目推荐效果差等问题,提出基于对比学习的简化图卷积网络推荐算法(SGCN-CL)。【方法】算法采用自监督学习方法为用户项目节点生成多视图进行对比学习,以提高模型推荐精度同时提高模型效率,有效改善对长尾项目的推荐;每个视图都对不同的输入进行相同特征提取任务,提出改进消息传播模式的网络SGCN进行相特征提取,以提升模型效率,改善过度平滑;最后进行多个任务联合优化得到推荐结果。【结果】在Amazon-Book、Yelp2018、Gowalla三个公开数据集上进行算法评估,结果表明推荐召回率在三个数据集上分别提升了15.4%、4.3%、1.4%,归一化折损累计增益(NDCG)分别提升了17.8%、4.1%、1.6%,且模型运行效率提升了55%以上。引入对比学习方法后,在对非热门的长尾项目的推荐效果上也有所提升。 展开更多
关键词 图卷积网络 自监督学习 对比学习 长尾项目
在线阅读 下载PDF
融合多维学术特征的引文推荐:一种基于异质图卷积网络的方法
18
作者 柳亚 朱莉 +3 位作者 毛谦昂 王佳鑫 颜嘉麒 陈曦 《现代情报》 北大核心 2025年第7期26-35,共10页
[目的/意义]现有的引文推荐方法大多采用基于元路径的网络表示学习方法,但该类方法通常存在忽略节点间复杂交互、过度依赖领域知识等问题。[方法/过程]本研究提出了一种基于异质图卷积网络的方法,旨在有效融合多维学术特征来提高推荐的... [目的/意义]现有的引文推荐方法大多采用基于元路径的网络表示学习方法,但该类方法通常存在忽略节点间复杂交互、过度依赖领域知识等问题。[方法/过程]本研究提出了一种基于异质图卷积网络的方法,旨在有效融合多维学术特征来提高推荐的准确性。首先利用预训练的BERT模型提取论文语义特征。然后设计一个注意力感知的图卷积神经网络以自动学习异质学术信息网络中节点的邻域信息。最后融合网络结构和语义信息以生成论文表示。[结果/结论]在3个数据集上进行了大量实验,结果表明所提出方法在各项指标上均优于基线模型。案例分析进一步证实了该方法在引文推荐任务中的有效性和适用性。 展开更多
关键词 引文推荐 图卷积网络 异质信息网络 注意力机制 自然语言处理
在线阅读 下载PDF
MB-HGCN:基于层次图卷积网络的多行为推荐方法
19
作者 严明时 陈慧临 +1 位作者 程志勇 韩亚洪 《计算机研究与发展》 北大核心 2025年第11期2752-2766,共15页
基于协同过滤(collaborative filtering,CF)的单行为推荐系统在实际应用中经常面临严重的数据稀疏性问题,从而导致性能不理想.多行为推荐(multi-behavior recommendation,MBR)旨在利用辅助行为数据来帮助学习用户偏好,以缓解数据稀疏性... 基于协同过滤(collaborative filtering,CF)的单行为推荐系统在实际应用中经常面临严重的数据稀疏性问题,从而导致性能不理想.多行为推荐(multi-behavior recommendation,MBR)旨在利用辅助行为数据来帮助学习用户偏好,以缓解数据稀疏性问题并提高推荐精度.MBR的核心在于如何从辅助行为中学习用户偏好(表示为向量表征),并将这些信息用于目标行为推荐.介绍了一种旨在利用多行为数据的新型推荐方法MB-HGCN(hierarchical graph convolutional network for multi-behavior recommendation).该方法通过从全局层面的粗粒度(即全局向量表征)到局部层面的细粒度(即行为特定向量表征)来学习用户和物品的向量表征.全局向量表征是从所有行为交互构建的统一同构图中学习得到的,并作为每个行为图中行为特定向量表征学习的初始化向量表征.此外,MB-HGCN还强调了用户和物品在行为特定表征上的差异,并设计了2种简单但有效的策略来分别聚合用户和物品的行为特定表征.最后,采用多任务学习进行优化.在3个真实数据集上的实验结果表明,所提方法显著优于基准方法,尤其是在Tmall数据集上,MB-HGCN在HR@10和NDCG@10指标上分别实现了73.93个百分点和74.21个百分点的性能提升. 展开更多
关键词 分层图卷 协同过滤 多行为推荐 图卷积网络 多任务学习
在线阅读 下载PDF
基于扩展时间和时空特征融合图卷积网络的骨架行为识别
20
作者 徐永刚 孙琦烜 +2 位作者 李凡甲 程健维 戴佳俊 《计算机工程》 北大核心 2025年第4期281-292,共12页
在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合... 在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合图卷积网络(ETFF-GCN)。该网络采用通道聚合的方法对动态空间拓扑和时序特征进行一次融合,然后运用注意力机制进行二次融合,进一步增强融合效果。在此基础上,为了全面提取时序特征,采用多个不同大小的卷积核构建时域图卷积,以提取多尺度和多粒度的时间特征,并引入有效压缩激励模块进行特征增强,提升特征表达能力。在3个大型数据集上对所提出的方法进行评估,实验结果表明,该方法的性能优于现有的方法。 展开更多
关键词 人体骨架行为识别 图卷积网络 时空特征融合 注意力机制 扩展时间
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部