隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用...隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用仍显不足,为解决这一问题,提出了一种基于双重图卷积神经网络(GCN)联合优化隐藏社区发现算法——HCDGCN(hidden community detection based on dual GCN)。HCDGCN融合节点局部和全局结构特征,通过两个GCN共同迭代优化一个损失函数,并逐步削弱权重,使得弱关系社区变得清晰可见,实现了隐藏社区发现。在真实数据集上的实验结果表明,HCDGCN在隐藏社区发现方面优于现有基准方法,实现了更快的收敛速度和更优的社区划分。展开更多
文摘隐藏社区检测有助于揭示网络深层次功能和结构特征,是一个具有挑战性的研究领域。隐藏社区由弱关系连接而成,受具有较强连接关系的显性社区影响,在网络中不易被检测到。当前的隐藏社区发现算法对节点属性信息和全局拓扑结构的综合利用仍显不足,为解决这一问题,提出了一种基于双重图卷积神经网络(GCN)联合优化隐藏社区发现算法——HCDGCN(hidden community detection based on dual GCN)。HCDGCN融合节点局部和全局结构特征,通过两个GCN共同迭代优化一个损失函数,并逐步削弱权重,使得弱关系社区变得清晰可见,实现了隐藏社区发现。在真实数据集上的实验结果表明,HCDGCN在隐藏社区发现方面优于现有基准方法,实现了更快的收敛速度和更优的社区划分。