图像超分辨率重建作为一个典型的非适定问题一直受到重视,尽管近年来出现了许多行之有效的卷积神经网络超分辨率重建模型,但如何全面挖掘图像先验信息,用以提高重建图像的细节清晰度仍有待深入研究.本文提出一种基于非抽取Wavelet变换...图像超分辨率重建作为一个典型的非适定问题一直受到重视,尽管近年来出现了许多行之有效的卷积神经网络超分辨率重建模型,但如何全面挖掘图像先验信息,用以提高重建图像的细节清晰度仍有待深入研究.本文提出一种基于非抽取Wavelet变换的边缘学习深度残差网络单幅图像超分辨重建模型NDW-EDRN(Non-Decimated Wavelet Edge learning using Deep Residual Networks),在图像经非抽取Wavelet变换后获得多冗余信息、平滑及梯度值较小的低频区域和边缘及梯度值较大的高频区域的基础上,将整体网络框架设计为采用不同结构的CNN(Convolutional Neural Networks)模型来对低频子带与高频子带分别进行学习的策略:对低频子带采用稠密跳跃连接的方式整体性学习低频子带间的映射关系;对高频子带采用一种新型的U-net模型,将图像退化过程中所丢失的边缘作为网络的期望输出,通过基于块的跳跃连接来使网络更精细地学习缺失性边缘,从而更加充分、有效地获取图像在退化过程中所丢失的边缘细节信息.大量实验结果表明,该网络模型能够有效提高重建图像的质量,特别在恢复低分辨率图像的边缘信息方面具有一定的优势,在一定程度上弥补了传统CNN网络模型捕捉图像细节信息的不足.展开更多
针对目前图像重建方法去噪效果不佳,导致重建后图像分辨率较低的问题,提出基于单层小波变换的视觉传感图像超分辨率重建方法。建立低分辨率和高分辨率两种识别空间,分别计算含有噪声干扰区域、正常区域以及信道噪声参数三者间的欧式距...针对目前图像重建方法去噪效果不佳,导致重建后图像分辨率较低的问题,提出基于单层小波变换的视觉传感图像超分辨率重建方法。建立低分辨率和高分辨率两种识别空间,分别计算含有噪声干扰区域、正常区域以及信道噪声参数三者间的欧式距离。利用二维平滑函数定义单层小波变换,有效去除视觉传感图像中的噪声,根据多尺度特性对图像中处于边缘微值的分辨率进行具体检测。对所有高分辨率点实行编码,再将编码后的图像系数按照分辨率的高低顺序整理为集合,输出图像完成重建。仿真实验证明,所提方法重建后图像清晰度较高,且结构相似性(Structural Similarity Index Measurement, SSIM)与峰值信噪比(Peak Signal to Noise Ratio, PSNR)的值均高于对比方法,最高值分别为0.95 dB与34.57 dB,说明所提方法的重建效果较好。展开更多
文摘图像超分辨率重建作为一个典型的非适定问题一直受到重视,尽管近年来出现了许多行之有效的卷积神经网络超分辨率重建模型,但如何全面挖掘图像先验信息,用以提高重建图像的细节清晰度仍有待深入研究.本文提出一种基于非抽取Wavelet变换的边缘学习深度残差网络单幅图像超分辨重建模型NDW-EDRN(Non-Decimated Wavelet Edge learning using Deep Residual Networks),在图像经非抽取Wavelet变换后获得多冗余信息、平滑及梯度值较小的低频区域和边缘及梯度值较大的高频区域的基础上,将整体网络框架设计为采用不同结构的CNN(Convolutional Neural Networks)模型来对低频子带与高频子带分别进行学习的策略:对低频子带采用稠密跳跃连接的方式整体性学习低频子带间的映射关系;对高频子带采用一种新型的U-net模型,将图像退化过程中所丢失的边缘作为网络的期望输出,通过基于块的跳跃连接来使网络更精细地学习缺失性边缘,从而更加充分、有效地获取图像在退化过程中所丢失的边缘细节信息.大量实验结果表明,该网络模型能够有效提高重建图像的质量,特别在恢复低分辨率图像的边缘信息方面具有一定的优势,在一定程度上弥补了传统CNN网络模型捕捉图像细节信息的不足.
文摘针对目前图像重建方法去噪效果不佳,导致重建后图像分辨率较低的问题,提出基于单层小波变换的视觉传感图像超分辨率重建方法。建立低分辨率和高分辨率两种识别空间,分别计算含有噪声干扰区域、正常区域以及信道噪声参数三者间的欧式距离。利用二维平滑函数定义单层小波变换,有效去除视觉传感图像中的噪声,根据多尺度特性对图像中处于边缘微值的分辨率进行具体检测。对所有高分辨率点实行编码,再将编码后的图像系数按照分辨率的高低顺序整理为集合,输出图像完成重建。仿真实验证明,所提方法重建后图像清晰度较高,且结构相似性(Structural Similarity Index Measurement, SSIM)与峰值信噪比(Peak Signal to Noise Ratio, PSNR)的值均高于对比方法,最高值分别为0.95 dB与34.57 dB,说明所提方法的重建效果较好。