Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal...Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.展开更多
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to...In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.展开更多
基金Project(51608281)supported by the National Natural Science Foundation of ChinaProject(LGG21E080005)supported by the Provincial Natural Science Foundation of Zhejiang Province,China。
文摘Geotechnical engineering that relates to the energy and environmental problem is receiving more and more attention worldwide.It is of great theoretical and practical value to study the properties of soil under thermal mechanical coupling and its mathematical description.Firstly,based on the general function,a unified primary and secondary consolidation model of saturated soil considering heating temperature is deduced.Combining the existing research achievements,a practical model is obtained which comprehensively reflects the effective stress change,creep and heating effects.After that,a series of thermo-consolidation tests are carried out using a temperature controlled consolidation instrument to study the effects of effective stress,temperature and consolidation duration on saturated soils.The corresponding functional formulas and parameters are obtained thusly.On this basis,the calculation and analysis are carried out to check the reliability and applicability of the newly proposed model.The new model is simple and practical and the parameters are easy to be obtained.And it describes the main law of consolidation compression of saturated soils under the thermal mechanical coupling effect.Therefore,it is suggested for theoretical analysis of thermal geotechnical engineering problems.
基金Project(GRF618006) supported by the Research Grants Council of the Hong Kong Special Administrative Region, China
文摘In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests.