期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
ADCS-ELM算法滚动轴承故障诊断
被引量:
6
1
作者
余萍
曹洁
黄开杰
《传感器与微系统》
CSCD
2020年第5期129-132,136,共5页
针对滚动轴承的故障信息难以从复杂噪声背景下的非平稳振动信号中提取且传统方法分类精度低等问题,提出一种基于集合经验模态分解(EEMD)能量特征提取和优化极限学习机神经网络(ADCS-ELM)分类诊断相结合的轴承故障诊断方法。利用EEMD对...
针对滚动轴承的故障信息难以从复杂噪声背景下的非平稳振动信号中提取且传统方法分类精度低等问题,提出一种基于集合经验模态分解(EEMD)能量特征提取和优化极限学习机神经网络(ADCS-ELM)分类诊断相结合的轴承故障诊断方法。利用EEMD对非线性和非平稳信号的自适应分解能力,将待检测轴承故障信号分解为包含故障特征的固有模态函数集(IMFs),并提取能量特征向量;利用自适应动态搜索步长改进布谷鸟搜索算法(ADCS)优化ELM网络连接权值和隐层阈值;将提取的故障特征向量用于训练极限学习机神经网络,得到最优权值和阈值;利用ADCS-ELM进行轴承故障诊断实验。实验结果表明:与BP,LVQ和ELM网络轴承故障诊断方法相比较,所提方法能够有效提高故障识别准确率,并且具有更快的计算速度。
展开更多
关键词
集
合经验
模态
分解
固有模态函数集
极限学习机
布谷鸟搜索算法
故障诊断
滚动轴承
在线阅读
下载PDF
职称材料
题名
ADCS-ELM算法滚动轴承故障诊断
被引量:
6
1
作者
余萍
曹洁
黄开杰
机构
兰州理工大学电气工程与信息工程学院
甘肃省工业过程控制重点实验室
兰州理工大学电气与控制工程国家级实验教学示范中心
出处
《传感器与微系统》
CSCD
2020年第5期129-132,136,共5页
基金
国家自然科学基金资助项目(61763208)
甘肃省自然科学基金资助项目(1506RJZA104)。
文摘
针对滚动轴承的故障信息难以从复杂噪声背景下的非平稳振动信号中提取且传统方法分类精度低等问题,提出一种基于集合经验模态分解(EEMD)能量特征提取和优化极限学习机神经网络(ADCS-ELM)分类诊断相结合的轴承故障诊断方法。利用EEMD对非线性和非平稳信号的自适应分解能力,将待检测轴承故障信号分解为包含故障特征的固有模态函数集(IMFs),并提取能量特征向量;利用自适应动态搜索步长改进布谷鸟搜索算法(ADCS)优化ELM网络连接权值和隐层阈值;将提取的故障特征向量用于训练极限学习机神经网络,得到最优权值和阈值;利用ADCS-ELM进行轴承故障诊断实验。实验结果表明:与BP,LVQ和ELM网络轴承故障诊断方法相比较,所提方法能够有效提高故障识别准确率,并且具有更快的计算速度。
关键词
集
合经验
模态
分解
固有模态函数集
极限学习机
布谷鸟搜索算法
故障诊断
滚动轴承
Keywords
ensemble empirical mode decomposition(EEMD)
intrinsic mode function set(IMFs)
extreme learning machine(ELM)
cuckoo search(CS)algorithm
fault diagnosis
rolling bearing
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
ADCS-ELM算法滚动轴承故障诊断
余萍
曹洁
黄开杰
《传感器与微系统》
CSCD
2020
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部