增强低信噪比(signal to noise ratio,SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition,EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研...增强低信噪比(signal to noise ratio,SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition,EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研究了极值域均值模式分解(extremum field mean mode decomposition,EMMD)方法。该方法改变了EMD只利用信号的极值点信息的单一做法,充分考虑输入信号所有信息,计算信号极值点间所有数据的均值,可以有效解决EMD中的端点效应问题。因此,提出了基于EMMD的语音增强方法,实验结果表明EMMD方法的引入,消除局部数据中隐含的支流分量,避免了EMD方法的端点效应问题,明显提高了带噪语音的SNR,改善了语音的质量。展开更多
经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应...经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。展开更多
文摘增强低信噪比(signal to noise ratio,SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition,EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研究了极值域均值模式分解(extremum field mean mode decomposition,EMMD)方法。该方法改变了EMD只利用信号的极值点信息的单一做法,充分考虑输入信号所有信息,计算信号极值点间所有数据的均值,可以有效解决EMD中的端点效应问题。因此,提出了基于EMMD的语音增强方法,实验结果表明EMMD方法的引入,消除局部数据中隐含的支流分量,避免了EMD方法的端点效应问题,明显提高了带噪语音的SNR,改善了语音的质量。
文摘经验模分解(Em p iricalM ode D ecom position,EMD)是希尔伯特-黄变换(HHT)的核心,而经验模分解方法的关键是对提取固有模式函数(Intrinsic m ode function,IM F)时所谓边缘效应问题的处理。提出了极值点对称延拓方法,用来对边缘效应问题进行处理。算例分析结果表明该方法的算法简单,计算速度快,能有效地抑制EMD分解时的边缘效应,分解得到的固有模式函数完备地体现了原信号真实的频率和幅值信息。在信号重构时不会带来原始信号的畸变。