期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
多维固有时间尺度分解算法
1
作者 彭秀艳 刘元勋 郑潜 《传感器与微系统》 CSCD 2019年第5期114-116,124,共4页
针对控制回路、机械系统实际运行数据复杂多变、非稳定、非线性、信号耦合性强等问题,提出了一种新的多维信号分解方法,多维固有时间尺度分解(MITD)。给出了算法步骤;对所提出的MITD进行一定程度优化,以达到更好的分解效果;对所提出算... 针对控制回路、机械系统实际运行数据复杂多变、非稳定、非线性、信号耦合性强等问题,提出了一种新的多维信号分解方法,多维固有时间尺度分解(MITD)。给出了算法步骤;对所提出的MITD进行一定程度优化,以达到更好的分解效果;对所提出算法进行仿真分析和工业实例分析,表明了MITD对多维数据分解的优越性。 展开更多
关键词 多维信号处理 多维固有时间尺度分解 多维经验模式分解 固有时间尺度分解 经验模式分解
在线阅读 下载PDF
基于固有时间尺度分解的风电机组轴承故障特征提取 被引量:21
2
作者 安学利 蒋东翔 +1 位作者 刘超 陈杰 《电力系统自动化》 EI CSCD 北大核心 2012年第5期41-44,102,共5页
针对风电机组调心滚子轴承故障振动信号非平稳、非线性的特点,提出了基于固有时间尺度分解(ITD)的轴承故障特征提取方法。ITD方法可以将复杂信号分解成若干个固有旋转分量和一个趋势分量之和,能准确地展示非平稳信号的动态特性,有较高... 针对风电机组调心滚子轴承故障振动信号非平稳、非线性的特点,提出了基于固有时间尺度分解(ITD)的轴承故障特征提取方法。ITD方法可以将复杂信号分解成若干个固有旋转分量和一个趋势分量之和,能准确地展示非平稳信号的动态特性,有较高的拆解效率和频率分辨率。分析结果表明,ITD方法能有效地提取风电机组轴承故障特征,可用于在线故障诊断。 展开更多
关键词 风电机组 调心滚子轴承 故障诊断 固有时间尺度分解 特征提取
在线阅读 下载PDF
基于改进固有时间尺度分解和谱峭度的轴承故障诊断方法 被引量:10
3
作者 张颖 张超 +3 位作者 王天正 俞华 白鹭 郝捷 《太阳能学报》 EI CAS CSCD 北大核心 2017年第3期699-706,共8页
基于固有时间尺度分解(intrinsic time-scale decomposition,ITD)方法的线性变换和三次样条插值,提出一种改进的固有时间尺度分解方法(improved intrinsic time-scale decomposition,IITD),将IITD方法和谱峭度(spectrumkurtosis,SK)相结... 基于固有时间尺度分解(intrinsic time-scale decomposition,ITD)方法的线性变换和三次样条插值,提出一种改进的固有时间尺度分解方法(improved intrinsic time-scale decomposition,IITD),将IITD方法和谱峭度(spectrumkurtosis,SK)相结合,实现轴承故障的智能诊断。首先采用改进ITD方法对采集的轴承振动信号进行分解,得到若干个固有旋转分量(proper rotation component,PRC),然后利用谱峭度法对相关性最大的PRC进行滤波处理,最后对滤波后的PRC进行Hilbert包络解调来提取故障特征频率,从而识别轴承故障类型。仿真和实验分析结果表明:该文所提IITD-SK法可成功提取出故障特征频率,实现轴承故障的有效诊断,与传统的傅里叶变换、包络谱分析以及EMD方法的结果相比,该方法诊断效果更佳。 展开更多
关键词 轴承 故障诊断 改进固有时间尺度分解 谱峭度
在线阅读 下载PDF
基于固有时间尺度分解的滚动轴承故障诊断 被引量:19
4
作者 陈勇旗 赵一鸣 陈杨 《电子测量与仪器学报》 CSCD 北大核心 2015年第11期1677-1682,共6页
针对滚动轴承故障振动信号的非线性和非平稳特性的情况,提出了一种基于固有时间尺度分解和样本熵的新型故障特征提取方法,并与Tikhonov支持向量机相结合实现滚动轴承的故障诊断。该研究充分利用了固有时间尺度分解具有提取故障特征明显... 针对滚动轴承故障振动信号的非线性和非平稳特性的情况,提出了一种基于固有时间尺度分解和样本熵的新型故障特征提取方法,并与Tikhonov支持向量机相结合实现滚动轴承的故障诊断。该研究充分利用了固有时间尺度分解具有提取故障特征明显、计算简单等优点。首先采用固有时间尺度分解方法将振动信号分解为一序列固有旋转分量和一个基线分量之和,并计算每个固有旋转分量的瞬时幅值和瞬时频率。然后,提取上述瞬时数据的样本熵作为特征向量。最后将其作为Tikhonov支持向量机的输入,实现滚动轴承故障精确分类。经过实验验证,本文方法获取的不同类型故障样本特征差别较大,与小波能谱熵、时间小波能谱熵相比能够更精确和快速的识别轴承故障。 展开更多
关键词 固有时间尺度分解 故障诊断 样本熵 Tikhonov支持向量机
在线阅读 下载PDF
基于固有时间尺度分解的能量算子解调法及故障诊断应用 被引量:9
5
作者 胥永刚 陆明 谢志聪 《海军工程大学学报》 CAS 北大核心 2013年第1期27-31,共5页
针对Teager能量算子包络解调方法主要用于对单分量的调幅调频信号进行解调,而真实机械故障信号多为多分量的调幅调频信号的问题,提出了能量算子与固有时间尺度分解相结合的解调方法。首先,利用固有时间尺度分解法将原始振动信号分解为... 针对Teager能量算子包络解调方法主要用于对单分量的调幅调频信号进行解调,而真实机械故障信号多为多分量的调幅调频信号的问题,提出了能量算子与固有时间尺度分解相结合的解调方法。首先,利用固有时间尺度分解法将原始振动信号分解为若干个固有旋转分量和一个单调趋势项,并基于波形匹配算法实现原始数据的自适应端点延拓以解决分解过程中的端点效应;然后再选取合适的固有旋转分量,利用能量算子方法实现调制信号的包络解调;最后,将该方法应用于仿真信号和故障模拟信号。结果表明:该方法能有效地提取机械振动信号的故障特征。 展开更多
关键词 故障诊断 固有时间尺度分解 能量算子 自适应延拓
在线阅读 下载PDF
基于集成固有时间尺度分解和谱峭度的滚动轴承故障检测 被引量:5
6
作者 向玲 鄢小安 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第7期2273-2280,共8页
针对固有时间尺度分解(ITD)方法中固有旋转分量存在局部波动的问题,提出一种集成固有时间尺度分解,将其结合谱峭度法,提高轴承故障检测的准确度。首先运用3次样条插值拟合基线控制点,实现振动信号的自适应频带划分,获得若干个固有旋转分... 针对固有时间尺度分解(ITD)方法中固有旋转分量存在局部波动的问题,提出一种集成固有时间尺度分解,将其结合谱峭度法,提高轴承故障检测的准确度。首先运用3次样条插值拟合基线控制点,实现振动信号的自适应频带划分,获得若干个固有旋转分量;然后根据K-L散度准则选取真实分量进行信号重构,使用谱峭度法确定带通滤波器的最优参数;最后分析滤波处理结果的包络谱,得到振动信号的特征信息。研究结果表明:与经验模式分解和单纯包络谱分析方法相比,采用集成固有时间尺度分解和谱峭度的包络方法(EITD-SK)能更好地提取滚动轴承故障特征信息,实现轴承故障的准确检测,结果与实际相符。 展开更多
关键词 固有时间尺度分解 谱峭度 K-L散度 滚动轴承 故障检测
在线阅读 下载PDF
基于固有时间尺度分解与多尺度形态滤波的滚动轴承故障特征提取方法 被引量:6
7
作者 关焦月 田晶 +1 位作者 赵金明 富华丰 《科学技术与工程》 北大核心 2019年第14期178-182,共5页
为了准确提取出滚动轴承的故障特征并对轴承状态进行评估,提出了一种固有时间尺度分解(intrinsic time-scale decomposition,ITD)与多尺度形态滤波相结合的滚动轴承故障特征提取方法。首先,采用ITD方法将滚动轴承故障信号分解成多个固... 为了准确提取出滚动轴承的故障特征并对轴承状态进行评估,提出了一种固有时间尺度分解(intrinsic time-scale decomposition,ITD)与多尺度形态滤波相结合的滚动轴承故障特征提取方法。首先,采用ITD方法将滚动轴承故障信号分解成多个固有旋转分量(proper rotation,PR);然后,对比各个PR分量与原始信号的相关性;最后,采用多尺度形态滤波算法对相关性较大PR分量进行滤波降噪,并提取滚动轴承故障特征频率。采用所建立方法对轴承外圈故障和内圈故障实验数据进行分析。结果表明,所提出的故障特征提取方法能够有效抑制噪声,清晰准确地提取出滚动轴承故障特征频率。 展开更多
关键词 固有时间尺度分解 形态滤波 滚动轴承 相关系数 故障诊断
在线阅读 下载PDF
基于改进固有时间尺度分解算法的实时次同步振荡监测方法 被引量:4
8
作者 周波 石鹏 +3 位作者 魏巍 陈刚 肖先勇 杨汉芦 《现代电力》 北大核心 2023年第1期27-34,共8页
为解决大规模风力发电并网系统中频繁发生次同步振荡的问题,需要快速准确地识别和检测次同步振荡的方法。次同步振荡发生时具有时变性和不确定性等特征,这给振荡的实时监测带来了挑战,针对该问题,首先提出了基于引入代数估计法改进的固... 为解决大规模风力发电并网系统中频繁发生次同步振荡的问题,需要快速准确地识别和检测次同步振荡的方法。次同步振荡发生时具有时变性和不确定性等特征,这给振荡的实时监测带来了挑战,针对该问题,首先提出了基于引入代数估计法改进的固有时间尺度分解算法(intrinsic time-scale decomposition,ITD)的解决方案。该方法不需要任何先验信息,且其性能不受振荡频率构成的影响。其次,利用合成信号、电磁暂态仿真和振荡实测数据进行了综合对比研究,结果表明该方法在信号检查的动态性能和参数估计精度等方面都取得了良好的效果。最后,通过硬件在环测试,验证了该方法的可行性。 展开更多
关键词 次同步振荡 固有时间尺度分解算法 风电并网系统 实时监测 电力系统保护
在线阅读 下载PDF
一种平滑固有时间尺度分解法在故障诊断中的应用 被引量:1
9
作者 袁哲 彭婷婷 《组合机床与自动化加工技术》 北大核心 2019年第10期87-92,共6页
为提高滚动轴承振动信号故障信息提取精度,针对故障诊断过程中存在的噪声干扰问题,文章提出了一种平滑固有时间尺度分解法(Smooth Intrinsic Time Decomposition, SITD)的算法,将小波分析法嵌入到ITD分解过程中,采用了一种自适应阈值函... 为提高滚动轴承振动信号故障信息提取精度,针对故障诊断过程中存在的噪声干扰问题,文章提出了一种平滑固有时间尺度分解法(Smooth Intrinsic Time Decomposition, SITD)的算法,将小波分析法嵌入到ITD分解过程中,采用了一种自适应阈值函数选取小波系数,使信号重建过程中获得更加精细的有用信号信息。将此方法应用于滚动轴承内圈故障和外圈故障诊断,结果表明与传统ITD方法比较,SITD方法不仅可有效消除背景噪声,同时保留冲击特征,还减少了端点效应,提高了滚动轴承的故障诊断精度。 展开更多
关键词 固有时间尺度分解 小波分析 滚动轴承 故障诊断
在线阅读 下载PDF
基于分形维数和BiLSTM的离心泵空化状态识别方法
10
作者 邹淑云 刘忠 +2 位作者 王文豪 喻哲钦 孙旭辉 《振动与冲击》 北大核心 2025年第4期305-312,共8页
针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用... 针对离心泵空化状态下压力脉动信号的非线性和复杂程度以及浅层机器学习方法在数据深度挖掘上的不足,提出一种基于分形维数和双向长短时记忆神经网络的离心泵空化状态识别方法。通过离心泵空化试验获得不同空化状态压力脉动信号。采用固有时间尺度分解对压力脉动信号进行处理,筛选出有效分量,计算其盒维数和关联维数,构建空化分形特征向量。将空化特征向量导入基于双向长短时记忆神经网络的空化状态识别模型。研究结果表明,有效分量的盒维数及关联维数随空化系数的变化具有明显的规律性,且模型识别的准确率高达92.8%,能够实现离心泵空化状态的识别。 展开更多
关键词 离心泵 空化 压力脉动 固有时间尺度分解 分形维数 双向长短时记忆神经网络
在线阅读 下载PDF
基于多尺度核独立成分分析的柴油机故障诊断 被引量:8
11
作者 刘敏 李志宁 +2 位作者 张英堂 范红波 詹超 《振动.测试与诊断》 EI CSCD 北大核心 2017年第5期892-897,共6页
为提高利用缸盖振动信号进行柴油机故障诊断的精度和速度,提出了一种基于多尺度核独立成分分析提取故障敏感频带的柴油机故障诊断方法。首先,提出奇异值能量标准谱对缸盖振动信号中的微弱冲击特征进行增强;然后,对信号进行固有时间尺度... 为提高利用缸盖振动信号进行柴油机故障诊断的精度和速度,提出了一种基于多尺度核独立成分分析提取故障敏感频带的柴油机故障诊断方法。首先,提出奇异值能量标准谱对缸盖振动信号中的微弱冲击特征进行增强;然后,对信号进行固有时间尺度分解,并基于相关性准则选择有效频带分量;最后,利用核独立成分分析消除有效频带之间的频带混叠,得到故障敏感信息集中的独立频带,并计算其自回归模型(auto regression model,简称AR)参数、模糊熵和标准化能量矩作为特征向量输入核极限学习机(kernel extreme learning machine,简称KELM)进行柴油机故障诊断。试验分析结果表明,该方法可以快速准确地提取缸盖振动信号中的柴油机故障敏感频带,增强故障敏感特征,故障诊断准确率达到99.65%。 展开更多
关键词 奇异值能量标准谱 固有时间尺度分解 核独立成分分析 故障敏感频带 柴油机故障诊断
在线阅读 下载PDF
改进多尺度幅值感知排列熵与随机森林结合的滚动轴承故障诊断 被引量:13
12
作者 吴海滨 陈寅生 +1 位作者 张庭豪 汪颖 《光学精密工程》 EI CAS CSCD 北大核心 2020年第3期621-631,共11页
针对滚动轴承故障识别准确率较低的问题,本文提出了一种新型滚动轴承故障诊断方法。该方法能够在准确识别滚动轴承故障类型的基础上,进一步分析故障的严重程度。首先,通过固有时间尺度分解提取滚动轴承振动信号的最佳固有旋转分量,突显... 针对滚动轴承故障识别准确率较低的问题,本文提出了一种新型滚动轴承故障诊断方法。该方法能够在准确识别滚动轴承故障类型的基础上,进一步分析故障的严重程度。首先,通过固有时间尺度分解提取滚动轴承振动信号的最佳固有旋转分量,突显故障信号的冲击特征;然后,利用改进多尺度幅值感知排列熵对信号幅值和频率变化敏感的特性,计算不同时间尺度下的幅值感知排列熵作为故障特征向量,改善了多尺度分析中的粗粒化过程,提升了故障特征提取的稳定性;最后,利用故障特征集构建随机森林多分类器,实现对滚动轴承不同故障类型的识别及严重程度分析,具有较强的泛化能力。实验结果表明,与现有滚动轴承故障诊断方法相比,平均故障识别准确率达到99.25%。该方法能够稳定而有效地提取滚动轴承的故障特征且具有较好的实时性。 展开更多
关键词 滚动轴承 故障诊断 固有时间尺度分解 幅值感知排列熵 随机森林
在线阅读 下载PDF
风力机齿轮箱振动信号分解方法研究 被引量:10
13
作者 胡璇 李春 叶柯华 《动力工程学报》 CAS CSCD 北大核心 2021年第4期323-329,共7页
基于风力机齿轮箱振动信号显著的非线性及非平稳性,分别采用集合经验模态分解(EEMD)、固有时间尺度分解(ITD)和经验小波变换(EWT)分解方法对齿轮箱振动信号进行处理,求取各分解方法分量信息熵并构成特征向量,然后作为支持向量机(SVM)模... 基于风力机齿轮箱振动信号显著的非线性及非平稳性,分别采用集合经验模态分解(EEMD)、固有时间尺度分解(ITD)和经验小波变换(EWT)分解方法对齿轮箱振动信号进行处理,求取各分解方法分量信息熵并构成特征向量,然后作为支持向量机(SVM)模型的输入进行故障识别及分类。结果表明:EWT能较好地提取振动信号中的冲击成分;ITD在3种分解方法中诊断准确率最高且最稳定,最利于风力机齿轮箱故障诊断。 展开更多
关键词 风力机齿轮箱 故障诊断 集合经验模态分解 经验小波变换 固有时间尺度分解
在线阅读 下载PDF
基于多尺度特征提取与KPCA的轴承故障诊断 被引量:8
14
作者 徐存知 熊新 《电子测量与仪器学报》 CSCD 北大核心 2019年第11期22-29,共8页
针对滚动轴承故障信号特征难以提取导致故障识别率低的问题,提出了基于多尺度特征提取与核主成分分析(KPCA)的轴承故障诊断模型。该模型首先利用固有时间尺度分解(ITD)将振动信号分解成若干个固有旋转(PR)分量,其次根据相关系数准则筛... 针对滚动轴承故障信号特征难以提取导致故障识别率低的问题,提出了基于多尺度特征提取与核主成分分析(KPCA)的轴承故障诊断模型。该模型首先利用固有时间尺度分解(ITD)将振动信号分解成若干个固有旋转(PR)分量,其次根据相关系数准则筛选固有旋转分量,然后求取固有旋转分量在多个尺度上的时域特征,最后利用核主成分分析将得到的多尺度特征进行融合,并用融合后的特征向量建立极限学习机(ELM)故障诊断模型,实现对滚动轴承状态的识别。与传统的单一尺度特征提取方法相比,多尺度特征提取在时域特征的基础上添加了尺度因子,具有度量时间序列在不同尺度因子下复杂性的优点。 展开更多
关键词 尺度特征提取 固有时间尺度分解 核主成分分析 极限学习机
在线阅读 下载PDF
ITD-多尺度熵和ELM的风电轴承健康状态识别 被引量:6
15
作者 张朝林 范玉刚 冯早 《机械科学与技术》 CSCD 北大核心 2018年第11期1731-1736,共6页
对风力发电机机组的运行状况进行实时监测,并识别其健康状态,是保证机组正常运行的关键,为此提出一种固有时间尺度分解(Intrinsic time-scale decomposition,ITD)-多尺度熵(Multiscale entropy,MSE)的振动信号分析方法,对振动信号进行... 对风力发电机机组的运行状况进行实时监测,并识别其健康状态,是保证机组正常运行的关键,为此提出一种固有时间尺度分解(Intrinsic time-scale decomposition,ITD)-多尺度熵(Multiscale entropy,MSE)的振动信号分析方法,对振动信号进行预处理,提取重构信号时域特征,并结合极限学习机(Extreme learning machine,ELM)对风电轴承健康状态进行识别。首先采用ITD方法对风电轴承的振动信号进行分解,得到一系列固有旋转分量,并计算其多尺度熵值,以多尺度熵值大小为依据,选取固有旋转分量并进行信号重构。计算重构信号的均方根值、峭度值、峰值因子与峰峰值,并将其作为特征指标值,建立ELM识别模型,识别风电轴承的健康状态。风电轴承试验结果表明,本文模型可以准确识别风电轴承健康状态。 展开更多
关键词 风电轴承 固有时间尺度分解 尺度熵值 极限学习机 健康状态识别
在线阅读 下载PDF
基于多尺度核独立元分析与核极限学习机的柴油机故障诊断 被引量:2
16
作者 肖忠宝 《车用发动机》 北大核心 2017年第6期84-89,共6页
为提高柴油机故障诊断速度和精度,提出了基于改进多尺度核独立元分析与量子粒子群优化核极限学习机的故障诊断方法。首先利用固有时间尺度分解对缸盖振动信号进行多尺度时频分解,并根据故障敏感度参数筛选有效分量以实现振动冲击特征增... 为提高柴油机故障诊断速度和精度,提出了基于改进多尺度核独立元分析与量子粒子群优化核极限学习机的故障诊断方法。首先利用固有时间尺度分解对缸盖振动信号进行多尺度时频分解,并根据故障敏感度参数筛选有效分量以实现振动冲击特征增强;然后利用核独立元分析消除有效分量间的频带混叠,分离故障敏感频带,并提取各频带的AR模型参数、多尺度模糊熵和标准化能量矩构造联合故障特征向量;最后建立基于量子粒子群优化的核极限学习分类器实现柴油机故障诊断。试验结果表明,该方法有效增强了缸盖振动信号中的故障敏感特征,提高了柴油机故障诊断速度和精度,故障分类准确率达到98.45%。 展开更多
关键词 固有时间尺度分解 尺度核独立元分析 特征增强 量子粒子群 核极限学习机 故障诊断
在线阅读 下载PDF
ITD结合参数优化MOMEDA的滚动轴承故障特征提取 被引量:1
17
作者 刘沛 彭珍瑞 何泽人 《机械科学与技术》 CSCD 北大核心 2024年第6期967-974,共8页
针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOME... 针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。 展开更多
关键词 固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数
在线阅读 下载PDF
基于ITD-LE指标的航空发动机中介轴承复合故障识别
18
作者 陈晓晨 赵文武 +1 位作者 刘海港 权丽 《传感技术学报》 CAS CSCD 北大核心 2024年第8期1389-1394,共6页
为了基于航空发动机整机机匣振动信号实现中介轴承复合故障的有效识别,从信号的复杂性角度出发,利用图谱中的拉普拉斯能量(Laplace Energy, LE)指标对信号的复杂性进行描述,提出了将固有时间尺度分解(Intrinsic Time Scale Decompositio... 为了基于航空发动机整机机匣振动信号实现中介轴承复合故障的有效识别,从信号的复杂性角度出发,利用图谱中的拉普拉斯能量(Laplace Energy, LE)指标对信号的复杂性进行描述,提出了将固有时间尺度分解(Intrinsic Time Scale Decomposition, ITD)与LE指标相结合的故障诊断方法。为实现复合故障的有效分离,基于ITD算法对某型航空发动机整机机匣振动加速度信号进行分解,并对分解后获得的固有旋转分量(Proper Rotation Components, PRCs)基于奇异值差分谱进行降噪。然后利用LE指标对分量信号进行筛选,对筛选后的信号进行重构,最后根据重构信号的平方解调谱,对实际航空发动机中介轴承的复合故障进行识别。结果表明:所提出的方法,可以基于航空发动机的整机机匣振动信号,准确有效地提取出中介轴承复合故障的特征频率,实现中介轴承复合故障类型的有效识别。 展开更多
关键词 固有时间尺度分解 拉普拉斯能量 图信号处理 复合故障 中介轴承
在线阅读 下载PDF
基于ITD复杂度和PSO-SVM的滚动轴承故障诊断 被引量:53
19
作者 张小龙 张氢 +1 位作者 秦仙蓉 孙远韬 《振动与冲击》 EI CSCD 北大核心 2016年第24期102-107,138,共7页
针对滚动轴承故障诊断问题,提出了一种基于固有时间尺度分解(ITD)、Lempel-Ziv复杂度特征和粒子群优化支持向量机(PSO-SVM)的故障诊断新方法。首先对滚动轴承的振动信号使用ITD方法进行分解,得到若干个频率由高到低的固有旋转(PR)分量,... 针对滚动轴承故障诊断问题,提出了一种基于固有时间尺度分解(ITD)、Lempel-Ziv复杂度特征和粒子群优化支持向量机(PSO-SVM)的故障诊断新方法。首先对滚动轴承的振动信号使用ITD方法进行分解,得到若干个频率由高到低的固有旋转(PR)分量,由于滚动轴承在不同的故障状态下的PR分量Lempel-Ziv复杂度的分布不同,提取各PR分量的Lempel-Ziv复杂度值作为每个样本的特征向量,使用支持向量机(SVM)对轴承振动信号样本进行故障类型的识别,并用粒子群优化(PSO)方法对支持向量机的参数优化以获得较高的识别准确率。对滚动轴承振动信号的实测结果的分析表明:该方法可以实现对滚动轴承快速、准确地诊断,且不受载荷变化的影响。 展开更多
关键词 固有时间尺度分解 Lempel-Ziv复杂度 支持向量机 粒子群优化 滚动轴承 故障诊断
在线阅读 下载PDF
基于ITD-形态滤波和Teager能量谱的轴承故障诊断 被引量:31
20
作者 张小龙 张氢 +1 位作者 秦仙蓉 孙远韬 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第4期788-795,共8页
针对强背景噪声下滚动轴承振动信号故障特征信息难以提取的问题,提出了结合固有时间尺度分解(ITD)-形态滤波和Teager能量谱的滚动轴承故障特征提取与诊断方法。首先对滚动轴承振动信号采用ITD方法分解,得到若干个固有旋转分量;考虑到噪... 针对强背景噪声下滚动轴承振动信号故障特征信息难以提取的问题,提出了结合固有时间尺度分解(ITD)-形态滤波和Teager能量谱的滚动轴承故障特征提取与诊断方法。首先对滚动轴承振动信号采用ITD方法分解,得到若干个固有旋转分量;考虑到噪声主要分布在高频段,取前2个高频的固有旋转分量进行形态滤波,并将滤波后的信号与剩余固有旋转分量重构;对重构信号计算Teager能量算子并绘制Teager能量谱,从Teager能量谱中可以识别出故障特征。将本方法应用于滚动轴承的内圈故障和外圈故障诊断,结果表明ITD-形态滤波可以有效去除振动信号中的背景噪声并保留冲击特征,Teager能量谱可以直观并准确显示出故障特征。 展开更多
关键词 滚动轴承 故障诊断 固有时间尺度分解 形态滤波 Teager能量谱
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部