期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
二维经验模态分解边界效应抑制研究
1
作者 蔡碧野 陈文辉 李峰 《计算机工程与应用》 CSCD 北大核心 2008年第13期176-178,223,共4页
二维经验模态分解中边界效应抑制是一个关键问题,现有方法主要讨论一维信号端点效应抑制,基本思想是信号延拓,不适合对二维信号进行边界效应抑制。提出一种二维图像边界效应抑制方法,该方法根据对称性、局部性原理和牛顿插值理论,对边... 二维经验模态分解中边界效应抑制是一个关键问题,现有方法主要讨论一维信号端点效应抑制,基本思想是信号延拓,不适合对二维信号进行边界效应抑制。提出一种二维图像边界效应抑制方法,该方法根据对称性、局部性原理和牛顿插值理论,对边界点进行插值,获取部分边界极值,采用这些极值对边界进行线性插值获取图像每个边界像素点的极大值和极小值。把这种边界效应抑制方法应用到二维经验模态分解中收到了较好的实验效果。 展开更多
关键词 二维经验态分解 边界效应 固态模函数
在线阅读 下载PDF
基于趋势补偿的防抱死系统轮速信号处理 被引量:2
2
作者 邹浙湘 王倩 黄宝山 《沈阳工业大学学报》 EI CAS 北大核心 2019年第1期52-56,共5页
为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂... 为了解决基于霍尔传感器混合动力汽车防抱死系统轮速检测信号容易产生温度漂移干扰的问题,提出了一种利用联合中值均值加权和经验模函数分解估计温度漂移干扰信号的算法.通过联合中值均值加权估计出温度漂移趋势成分后,再对估计温度漂移趋势进行自适应固态模函数分解,利用t检验的方法,判断出各阶固态模函数中不属于温度漂移趋势的成分,继而得到温度漂移趋势的精确估计.对比了不同温度漂移干扰下本文算法与形态学滤波算法的噪声修正性能,结果表明,本文算法能够有效剔除温度漂移干扰,平均信噪比提升4 d B以上. 展开更多
关键词 混合动力汽车 汽车防抱死系统 霍尔传感器 温度漂移 轮速信号 联合中值均值加权估计 经验函数分解 固态模函数
在线阅读 下载PDF
Noise-assisted MEMD based relevant IMFs identification and EEG classification 被引量:7
3
作者 SHE Qing-shan MA Yu-liang +2 位作者 MENG Ming XI Xu-gang LUO Zhi-zeng 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期599-608,共10页
Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provi... Noise-assisted multivariate empirical mode decomposition(NA-MEMD) is suitable to analyze multichannel electroencephalography(EEG) signals of non-stationarity and non-linearity natures due to the fact that it can provide a highly localized time-frequency representation.For a finite set of multivariate intrinsic mode functions(IMFs) decomposed by NA-MEMD,it still raises the question on how to identify IMFs that contain the information of inertest in an efficient way,and conventional approaches address it by use of prior knowledge.In this work,a novel identification method of relevant IMFs without prior information was proposed based on NA-MEMD and Jensen-Shannon distance(JSD) measure.A criterion of effective factor based on JSD was applied to select significant IMF scales.At each decomposition scale,three kinds of JSDs associated with the effective factor were evaluated:between IMF components from data and themselves,between IMF components from noise and themselves,and between IMF components from data and noise.The efficacy of the proposed method has been demonstrated by both computer simulations and motor imagery EEG data from BCI competition IV datasets. 展开更多
关键词 multichannel electroencephalography noise-assisted multivariate empirical mode decomposition Jensen-Shannondistance brain-computer interface
在线阅读 下载PDF
Dynamic unbalance detection of cardan shaft in high-speed train based on EMD-SVD-NHT 被引量:4
4
作者 丁建明 林建辉 +1 位作者 何刘 赵洁 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2149-2157,共9页
Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa... Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved. 展开更多
关键词 cardan shaft empirical model decomposition (EMD) singular value decomposition (SVD) normalized Hilbert transform (NHT) dynamic unbalance detection
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部