期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
因素空间理论下的因果概率推理分类算法研究
1
作者 曾繁慧 胡光闪 +1 位作者 孙慧 汪培庄 《智能系统学报》 CSCD 北大核心 2024年第4期1042-1051,共10页
机器学习方法与因果推理结合能极大地提升方法性能。为探究因果概率正逆向推理的分类效果,基于因素空间理论下的因素概率论,利用条件概率,研究正向因素概率推理原理及模型并提出正向因果概率推理分类法(forward causal probabilistic in... 机器学习方法与因果推理结合能极大地提升方法性能。为探究因果概率正逆向推理的分类效果,基于因素空间理论下的因素概率论,利用条件概率,研究正向因素概率推理原理及模型并提出正向因果概率推理分类法(forward causal probabilistic inference classification algorithm,FCPIC)和简化条件的可取度分类法;研究逆向因素概率推理原理及模型并结合贝叶斯网络提出逆向因果概率推理分类法(reverse causal probabilistic inference classification algorithm,RCPIC)。将3个分类算法与KNN(K-Nearest neighbor)和SVM(support vector machine)算法进行实例对比验证,研究结果表明:FCPIC算法、可取度分类算法和RCPIC算法简单有效、具有可行性和实用性,且可取度分类法和RCPIC算法性能优于SVM和KNN算法,FCPIC算法对实际数据预测中必要类有查全需求的情况更优。研究结论丰富了因素空间的理论研究和应用价值。 展开更多
关键词 因素空间 因果概率推理分类法 可取度分类法 贝叶斯网络 因素概率论 条件概率 因果关系 人工智能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部