期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于时间卷积网络的刀具磨损在线监测
1
作者 柳大虎 汪永超 何欢 《组合机床与自动化加工技术》 北大核心 2023年第4期174-176,182,共4页
在刀具磨损监测领域中,传统卷积神经网络难以选择合适的卷积核大小,循环神经网络容易发生梯度消失和梯度爆炸,为克服以上缺点,引入时间卷积网络构建在线监测模型对刀具磨损量进行监测。考虑到原始数据量过大且每次走刀过程所采集数据量... 在刀具磨损监测领域中,传统卷积神经网络难以选择合适的卷积核大小,循环神经网络容易发生梯度消失和梯度爆炸,为克服以上缺点,引入时间卷积网络构建在线监测模型对刀具磨损量进行监测。考虑到原始数据量过大且每次走刀过程所采集数据量不同,对数据进行降采样处理,获得了大小为(7,5000)的网络输入数据。通过一维卷积神经网络和时间卷积块的依次叠加,对数据进行特征提取,使用全连接网络将特征映射到刀具磨损值。最后,使用PHM大赛中铣刀磨损的数据验证了模型的效果。实验结果证明,基于时间卷积网络的刀具磨损在线监测模型具有较强的泛化能力,在验证集上均方误差和平均绝对误差分别仅为65.16与6.21,相较于隐马尔科夫、梯度提升树等模型具有较大的提升。 展开更多
关键词 刀具磨损 时间卷积网络 时间序列预测 因果膨胀卷积 残差连接
在线阅读 下载PDF
融合EEMD和多通道dTCN-LSTM的车辆载重状态识别模型
2
作者 徐慧琳 孙子文 《小型微型计算机系统》 北大核心 2025年第5期1112-1119,共8页
为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛... 为精确识别后装车载重状态,研究集成经验模态分解(EEMD)和多通道双重膨胀因果卷积(dTCN)-长短期记忆神经网络(LSTM)融合的识别模型.利用滑动窗口截取载重时序特征向量构建特征向量矩阵,通过EEMD将特征向量矩阵分解为多个子分量矩阵并筛选不含噪声的子分量矩阵,降低时序数据噪声;由不同深度dTCN堆叠而成的多通道提取不同子分量矩阵的局部特征,各通道提取的局部特征相加送入LSTM中提取全局特征形成特征向量;最后由全连接网络将特征向量识别为装载、卸载、运行3种运行状态.采集真实车辆运行数据作为实验数据集,实验结果表明,与支持向量机(SVM)、卷积神经网络(CNN)、LSTM、CNN-LSTM、EMD-CNN-GRU、VMD-TCN-LSTM模型相比,识别准确率分别提高6.82%、5.66%、3.94%、3.21%、3.52%. 展开更多
关键词 集成经验模态分解 多通道 双重膨胀因果卷积 长短期记忆神经网络 载重状态识别
在线阅读 下载PDF
数据驱动的半无限介质裂纹识别模型研究 被引量:2
3
作者 江守燕 邓王涛 +1 位作者 孙立国 杜成斌 《力学学报》 EI CAS CSCD 北大核心 2024年第6期1727-1739,共13页
缺陷识别是结构健康监测的重要研究内容,对评估工程结构的安全性具有重要的指导意义,然而,准确确定结构缺陷的尺寸十分困难.论文提出了一种创新的数据驱动算法,将比例边界有限元法(scaled boundary finite element methods,SBFEM)与自... 缺陷识别是结构健康监测的重要研究内容,对评估工程结构的安全性具有重要的指导意义,然而,准确确定结构缺陷的尺寸十分困难.论文提出了一种创新的数据驱动算法,将比例边界有限元法(scaled boundary finite element methods,SBFEM)与自编码器(autoencoder,AE)、因果膨胀卷积神经网络(causal dilated convolutional neural network,CDCNN)相结合用于半无限介质中的裂纹识别.在该模型中,SBFEM用于模拟波在含不同裂纹状缺陷半无限介质中的传播过程,对于不同的裂纹状缺陷,仅需改变裂纹尖端的比例中心和裂纹开口处节点的位置,避免了复杂的重网格过程,可高效地生成足够的训练数据.模拟波在半无限介质中传播时,建立了基于瑞利阻尼的吸收边界模型,避免了对结构全域模型进行计算.搭建了CDCNN,确保了时序数据的有序性,并获得更大的感受野而不增加神经网络的复杂性,可捕捉更多的历史信息,AE具有较强的非线性特征提取能力,可将高维的原始输入特征向量空间映射到低维潜在特征向量空间,以获得低维潜在特征用于网络模型训练,有效提升了网络模型的学习效率.数值算例表明:提出的模型能够高效且准确地识别半无限介质中裂纹的量化信息,且AE-CDCNN模型的识别效率较单CDCNN模型提高了约2.7倍. 展开更多
关键词 数据驱动 比例边界有限元法 自编码器 因果膨胀卷积神经网络 裂纹识别
在线阅读 下载PDF
基于改进Transformer的滚动轴承剩余寿命预测方法 被引量:1
4
作者 温江涛 张哲 《燕山大学学报》 CAS 北大核心 2024年第4期312-321,共10页
针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研... 针对现有的滚动轴承剩余使用寿命预测方法存在预测准确度不足、训练效率不高等问题,提出一种时频分析结合改进Transformer的轴承剩余使用寿命预测方法。首先用短时傅里叶变换提取轴承的时频特征,为了改善Transformer的特征提取能力,研究了基于膨胀因果卷积的可变长度数据分析结构,并设计了自适应位置编码模块替代Transformer的传统编码方式,改进的模型增强了对时频数据的分析能力,实现了高效、准确的端到端的滚动轴承剩余寿命预测。在PHM2012轴承数据集上的实验结果表明提出的方法的效率比LSTM高20%,同时预测精度相比于多种现有传统方法均具有16%以上的提升。 展开更多
关键词 剩余寿命预测 TRANSFORMER 膨胀因果卷积 自适应位置编码
在线阅读 下载PDF
基于VMD和RDC-Informer的短期供热负荷预测模型 被引量:3
5
作者 谭全伟 薛贵军 谢文举 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期39-51,共13页
精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数... 精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数据的非平稳性;然后在Informer模型中引入相对位置编码代替绝对位置编码,以更好地捕捉序列数据中的依赖关系和避免信息泄漏;接着采用膨胀因果卷积代替正则卷积,增加感受野,提升局部信息的提取能力;最后在多个数据集上与主流预测模型(GRU、LSTM、Transformer和Informer)进行对比实验。结果表明,RDC-Informer模型的评价指标R2达到了98.3%,与对比模型相比,分别提高了11.6%、6.3%、4.7%和2.6%。此外,通过增加卷积核以评估膨胀因果卷积的效果,验证了RDC-Informer模型的适用性和准确性,为进一步提高智慧供热的时效性提供了一定参考。 展开更多
关键词 供热负荷预测 INFORMER 膨胀因果卷积 相对位置编码 VMD
在线阅读 下载PDF
基于注意力机制的多模态脉搏波分析实验与算法设计 被引量:3
6
作者 王刚 汤宇飞 +1 位作者 王晚秋 张晓光 《实验技术与管理》 CAS 北大核心 2023年第8期63-71,共9页
该文设计了一个多模态脉搏波采集与分析综合实验。该实验基于Python图形用户界面,将脉搏波的采集、预处理和分析诊断算法等模块集成到虚拟仿真软件中,开发了基于串口通信的脉搏波数据实时采集方法,并结合脉搏信号的时域特点,提出一种基... 该文设计了一个多模态脉搏波采集与分析综合实验。该实验基于Python图形用户界面,将脉搏波的采集、预处理和分析诊断算法等模块集成到虚拟仿真软件中,开发了基于串口通信的脉搏波数据实时采集方法,并结合脉搏信号的时域特点,提出一种基于注意力机制和变尺度因果膨胀卷积的多模态端到端脉搏诊断算法。对比实验表明,该方法诊断准确率达到93%以上。该软件算法不仅使传统中医的“切脉”量化为可视的脉象信号,而且提升了脉枕精度。 展开更多
关键词 人体脉象 注意力机制 多模态 因果膨胀卷积
在线阅读 下载PDF
基于MSC-ECA-Transformer的矿用皮带输送电机剩余寿命预测研究
7
作者 丁榕 邱成鹏 王帅 《金属矿山》 2025年第8期150-157,共8页
矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。针对现有预测模型在特征提取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数据,并基于MSC-ECA-Transformer模... 矿用皮带输送电机剩余寿命预测是保障矿山安全生产的关键技术之一。针对现有预测模型在特征提取、时序依赖性建模及计算复杂度方面的不足,利用变频一体机上的多源传感器系统采集矿用皮带输送电机运行数据,并基于MSC-ECA-Transformer模型进行剩余寿命预测。该模型在Transformer主干网络中嵌入了多尺度因果膨胀卷积(MSC)和高效通道注意力(ECA)模块,通过MSC构建多级时序特征提取,解决传统自注意力机制对设备渐进式退化模式多尺度特征捕捉不足的问题。同时引入ECA模块实现特征通道的动态权重分配,增强故障敏感特征的显著性表达。试验表明,MSC-ECA-Transformer模型在预测精度和稳定性上表现优异,改进后模型的平均绝对误差(MAE)以及均方根误差(RMSE)分别为0.0851以及0.0918,与Transformer模型相比,分别降低34.0%及36.2%,为矿用电机剩余寿命预测提供了技术支撑。 展开更多
关键词 皮带运输机 电机 寿命预测 MSC-ECA-Transformer 多尺度因果膨胀卷积 时间序列
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部