期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
普洱市不同产茶区普洱生茶香气成分差异性分析 被引量:18
1
作者 张晨霞 王国成 +3 位作者 王超 李清 刘顺航 毕开顺 《食品研究与开发》 CAS 北大核心 2020年第1期177-184,共8页
采用顶空固相微萃取(headspace solid-phase microextraction,HS-SPME)结合气相色谱-质谱联用仪(gas chromatography-mass spectrometry,GC-MS)分别对普洱市5个产茶区的普洱生茶香气组分进行分析。结果表明,42个普洱生茶样品中共检测出8... 采用顶空固相微萃取(headspace solid-phase microextraction,HS-SPME)结合气相色谱-质谱联用仪(gas chromatography-mass spectrometry,GC-MS)分别对普洱市5个产茶区的普洱生茶香气组分进行分析。结果表明,42个普洱生茶样品中共检测出83种香气成分,其中醇类化合物23种,碳氢类化合物20种,酯类化合物12种,甲氧基苯类化合物8种,酮类化合物8种,酸类化合物4种,酚类化合物3种,醛类化合物3种,含氮类化合物2种。不同产茶区普洱生茶中醇类、碳氢类和醛类化合物相对百分含量差异均不显著,甲氧基苯类化合物含量差异显著性比例较大,酯类、酮类、酚类、酸类和含氮类化合物含量差异显著性比例较小。以83种香气成分相对百分含量为变量进行偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA),不同产茶区的普洱生茶样品呈现明显的分离趋势,变量重要性因子(variable importance in the projection,VIP)分析,33种香气成分对不同产茶区普洱生茶样品区分起主要作用(VIP> 1),33种香气成分中甲氧基苯类、酮类、酯类和醇类物质占比最大。 展开更多
关键词 普洱生茶 香气成分 普洱市不同产茶区 偏最小二乘判别分析(PLS-DA) 变量重要性因子(VIP)分析
在线阅读 下载PDF
基于信息量-机器学习耦合的野火灾害易发性评估
2
作者 岳韦霆 任超 梁月吉 《消防科学与技术》 CAS 北大核心 2023年第10期1444-1452,共9页
为充分发挥统计学和机器学习模型在野火灾害易发性分析和评估中的优势,以森林资源丰富且深受野火灾害困扰的桂林市为研究区,分别从气候、地形、水文以及人文等方面选取16个评价因子。将信息量(IV)模型分别与逻辑回归(LR)、人工神经网络(... 为充分发挥统计学和机器学习模型在野火灾害易发性分析和评估中的优势,以森林资源丰富且深受野火灾害困扰的桂林市为研究区,分别从气候、地形、水文以及人文等方面选取16个评价因子。将信息量(IV)模型分别与逻辑回归(LR)、人工神经网络(ANN)、随机森林(RF)和极致梯度提升(XGBoost)4种机器学习(ML)模型相耦合,对桂林市野火灾害易发性进行评价分析。结果表明,IV-XGBoost模型的AUC和准确率分别为0.957和0.921,具有最佳的预测性能,能够有效评估野火灾害的易发性,并为当地野火灾害的防治提供有价值的参考。 展开更多
关键词 野火易发性评价 信息量模型 机器学习模型 野火灾害 因子重要性分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部