回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种...回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。展开更多
基于三维点云的同时定位与建图(simultaneous localization and mapping, SLAM)是机器人导航与定位领域重要的技术之一.然而具有回环检测功能的三维点云SLAM系统仍鲜见于文献中.本文首先提出了一种新的基于三维点云的室外SLAM系统的框架...基于三维点云的同时定位与建图(simultaneous localization and mapping, SLAM)是机器人导航与定位领域重要的技术之一.然而具有回环检测功能的三维点云SLAM系统仍鲜见于文献中.本文首先提出了一种新的基于三维点云的室外SLAM系统的框架,该框架由里程计、回环检测、位姿优化3部分组成.其次针对回环检测,提出一种基于点云片段匹配约束的方法提升回环检测的效率.最后针对位姿优化,提出两种轨迹漂移优化算法,分别为全局一致性的回环调整算法和位姿预测和补偿算法.通过广泛的实验验证本文提出的方法,结果表明本文所提出的SLAM系统具有稳定和精确的位姿估计能力.展开更多
文摘回环检测是消除同时定位与地图构建(simultaneous localization and mapping,SLAM)系统中累计误差的关键所在,在光照条件或视角变化较大的情况下,传统的基于外观的回环检测方法往往失效。针对这种情况,在ORBSLAM2的框架基础上提出一种物体级的回环检测方法。利用目标检测获得的语义信息和特征点信息构建物体级语义地图。将语义地图抽象成拓扑图并将地标抽象成节点,用颜色直方图描述节点信息,结合节点间的几何关系,基于语义和几何一致性约束,提出一种图匹配方法实现回环检测。当检测到回环时,通过物体对齐的方式进行回环校正。在公开的TUM和USTC数据集上进行实验,结果表明提出的系统精度较ORBSLAM2平均提高了49.58%,并且构建的语义地图显示出良好的定位效果。
文摘为提高回环检测的精度,同时满足实时性的需求,提出了一种多信息作用下的激光回环检测算法。首先,利用惯性测量单元(inertial measurement unit,IMU)信息得到每个点云帧之间的相对运动;然后,提取点云中的高度信息、强度信息以及数量信息并归一化处理;在上下文扫描(scan context,SC)描述符的基础上,定义了融合IMU与点云信息的上下文扫描(IMU and point scan context,IPSC)描述符以及对应的相似度函数;最后,引入改进的正态分布变换(normal distributions transform,NDT)算法进行综合相似度判断。针对所提出的算法在多个数据集上进行实验,结果表明,该算法在回环检测时具有较高的精度,能够在不同场景下进行识别,同时满足了系统的实时性要求,为激光回环检测提供了一种新的方法。
文摘基于三维点云的同时定位与建图(simultaneous localization and mapping, SLAM)是机器人导航与定位领域重要的技术之一.然而具有回环检测功能的三维点云SLAM系统仍鲜见于文献中.本文首先提出了一种新的基于三维点云的室外SLAM系统的框架,该框架由里程计、回环检测、位姿优化3部分组成.其次针对回环检测,提出一种基于点云片段匹配约束的方法提升回环检测的效率.最后针对位姿优化,提出两种轨迹漂移优化算法,分别为全局一致性的回环调整算法和位姿预测和补偿算法.通过广泛的实验验证本文提出的方法,结果表明本文所提出的SLAM系统具有稳定和精确的位姿估计能力.