目的评价自回归移动平均模型(autoregressive integrated moving average model,ARIMA)在预测门诊输液人次中的作用,为医疗资源配置提供依据。方法对某医院门诊部治疗室2003年1月至2007年12月的门诊输液患者进行统计分析,并使用SAS的AR...目的评价自回归移动平均模型(autoregressive integrated moving average model,ARIMA)在预测门诊输液人次中的作用,为医疗资源配置提供依据。方法对某医院门诊部治疗室2003年1月至2007年12月的门诊输液患者进行统计分析,并使用SAS的ARIMA过程预测模型对2008年度门诊输液人次进行预测。结果5年间门诊输液人次逐年增加,在各年度内存在波峰和波谷;不同年度每月门诊量有明显变化,但2月份均为门诊输液人次的低谷期。预测2008年门诊输液人次将明显增加,并呈现出季节性。结论ARIMA模型可以合理预测各月门诊输液人次的变化,为医疗资源配置提供重要依据。展开更多
文中通过使用非信息先验方法,为ARMA频谱模型开发了一种贝叶斯方法,进行了基于马尔可夫蒙特卡罗(Markov Chain Monte Carlo,MCMC)的贝叶斯计算和模拟,得出了边缘后验分布的特征,如贝叶斯估计量和ARMA模型参数的置信区间。将这两种方法...文中通过使用非信息先验方法,为ARMA频谱模型开发了一种贝叶斯方法,进行了基于马尔可夫蒙特卡罗(Markov Chain Monte Carlo,MCMC)的贝叶斯计算和模拟,得出了边缘后验分布的特征,如贝叶斯估计量和ARMA模型参数的置信区间。将这两种方法与传统的最小二乘法和最大似然方法进行了比较,并给出了带有两个ARMA模型示例的数值说明,以评估程序的性能。比较结果表明,对于不太稳定的ARMA模型,贝叶斯方法是合理的,并且可以选择任何一种方法来获得更稳定的功率谱。与其他方法相比,贝叶斯方法提供了适用于任意阶次ARMA模型光谱的最佳拟合。展开更多
文摘目的评价自回归移动平均模型(autoregressive integrated moving average model,ARIMA)在预测门诊输液人次中的作用,为医疗资源配置提供依据。方法对某医院门诊部治疗室2003年1月至2007年12月的门诊输液患者进行统计分析,并使用SAS的ARIMA过程预测模型对2008年度门诊输液人次进行预测。结果5年间门诊输液人次逐年增加,在各年度内存在波峰和波谷;不同年度每月门诊量有明显变化,但2月份均为门诊输液人次的低谷期。预测2008年门诊输液人次将明显增加,并呈现出季节性。结论ARIMA模型可以合理预测各月门诊输液人次的变化,为医疗资源配置提供重要依据。
文摘文中通过使用非信息先验方法,为ARMA频谱模型开发了一种贝叶斯方法,进行了基于马尔可夫蒙特卡罗(Markov Chain Monte Carlo,MCMC)的贝叶斯计算和模拟,得出了边缘后验分布的特征,如贝叶斯估计量和ARMA模型参数的置信区间。将这两种方法与传统的最小二乘法和最大似然方法进行了比较,并给出了带有两个ARMA模型示例的数值说明,以评估程序的性能。比较结果表明,对于不太稳定的ARMA模型,贝叶斯方法是合理的,并且可以选择任何一种方法来获得更稳定的功率谱。与其他方法相比,贝叶斯方法提供了适用于任意阶次ARMA模型光谱的最佳拟合。