Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T...Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.展开更多
Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study...Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.展开更多
In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element m...In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.展开更多
基金Projects(61001188,1161140319)supported by the National Natural Science Foundation of ChinaProject(2012ZX03001034)supported by the National Science and Technology Major ProjectProject(YETP1202)supported by Beijing Higher Education Young Elite Teacher Project,China
文摘Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.
基金Projects(2007JT3018, 2008JT1013, 2009FJ4056) supported by the Key Project in Hunan Science and Technology Program, ChinaProject(20090161120014) supported by the New Teachers Sustentation Fund in Doctoral Program, Ministry of Education, China
文摘Support vector regression (SVR) method is a novel type of learning machine algorithms, which is seldom applied to the development of urban atmospheric quality models under multiple socio-economic factors. This study presents four SVR models by selecting linear, radial basis, spline, and polynomial functions as kernels, respectively for the prediction of urban dust fall levels. The inputs of the models are identified as industrial coal consumption, population density, traffic flow coefficient, and shopping density coefficient. The training and testing results show that the SVR model with radial basis kernel performs better than the other three both in the training and testing processes. In addition, a number of scenario analyses reveal that the most suitable parameters (insensitive loss function e, the parameter to reduce the influence of error C, and discrete level or average distribution of parameters σ) are 0.001, 0.5, and 2 000, respectively.
基金Project(50678052) supported by the National Natural Science Foundation of China
文摘In order to establish the baseline finite element model for structural health monitoring,a new method of model updating was proposed after analyzing the uncertainties of measured data and the error of finite element model.In the new method,the finite element model was replaced by the multi-output support vector regression machine(MSVR).The interval variables of the measured frequency were sampled by Latin hypercube sampling method.The samples of frequency were regarded as the inputs of the trained MSVR.The outputs of MSVR were the target values of design parameters.The steel structure of National Aquatic Center for Beijing Olympic Games was introduced as a case for finite element model updating.The results show that the proposed method can avoid solving the problem of complicated calculation.Both the estimated values and associated uncertainties of the structure parameters can be obtained by the method.The static and dynamic characteristics of the updated finite element model are in good agreement with the measured data.