期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于森林清查资料的乔木林生物量估算方法的比较 被引量:61
1
作者 李海奎 赵鹏祥 +1 位作者 雷渊才 曾伟生 《林业科学》 EI CAS CSCD 北大核心 2012年第5期44-52,共9页
利用广东、江西、贵州、陕西、吉林和北京6省市第六、第七次森林资源连续清查的资料,应用IPCC法、转换因子连续函数法和加权生物量回归模型法,从计算原理过程、方法特点、模型的可验证和可重复性以及2期生物量增长的稳定性等方面对3种... 利用广东、江西、贵州、陕西、吉林和北京6省市第六、第七次森林资源连续清查的资料,应用IPCC法、转换因子连续函数法和加权生物量回归模型法,从计算原理过程、方法特点、模型的可验证和可重复性以及2期生物量增长的稳定性等方面对3种估算乔木林生物量的方法进行比较。结果表明:对于总生物量,可变BEF2的IPCC法估算结果偏大,固定BEF2的IPCC法估算结果偏小,转换因子连续函数法和加权生物量回归模型法的估算结果较为适宜;对于转换因子,同一树种在不同的区域间,加权生物量回归模型法最为稳定;各个树种7次清查的转换因子,IPCC法和加权生物量回归模型法比较稳定,转换因子连续函数法波动较大;对于2期生物量增长率,可变BEF2的IPCC法和固定BEF2的IPCC法结果接近,比较稳定,转换因子连续函数法波动很大。 展开更多
关键词 IPCC 转换因子连续函数 加权生物量回归模型法 乔木林生物量 估算
在线阅读 下载PDF
3种用水量预测方法在京津冀地区的适用性比较 被引量:20
2
作者 白鹏 龙秋波 《水资源保护》 CAS CSCD 北大核心 2021年第2期102-107,共6页
本文比较了年增长率法、自回归模型法和灰色神经网络法3种常用的用水量预测方法在京津冀地区年用水量预测中的适用性,基于优选的方法对京津冀2019—2025年的年用水量进行了预测。结果表明,北京、天津和河北省1997—2018年的年用水量呈... 本文比较了年增长率法、自回归模型法和灰色神经网络法3种常用的用水量预测方法在京津冀地区年用水量预测中的适用性,基于优选的方法对京津冀2019—2025年的年用水量进行了预测。结果表明,北京、天津和河北省1997—2018年的年用水量呈现不同的变化趋势:北京和天津的年用水量呈先减少后增加的非线性变化趋势,而河北省的年用水量呈波动递减的趋势。灰色神经网络法在京津冀3地均优于其他两个模型,被推荐为该地区年用水量预测的首选方法。基于灰色神经网络法的年用水量预测结果表明,2019—2025年北京市年用水量将趋于平稳,天津市的年用水量将缓慢增加,而河北省的年用水量则将继续下降。 展开更多
关键词 用水量预测 年增长率 回归模型法 灰色神经网络 水资源 京津冀
在线阅读 下载PDF
公路路面使用性能评价方法研究 被引量:11
3
作者 黄文雄 谭利英 邓丽娟 《交通科技》 2003年第4期97-100,共4页
介绍目前公路路面使用性能评价方法的现状 ,简述每一种评价方法的基本思想。通过分析对比 ,讨论各种评价方法的优点与不足 ,并提出公路路面使用性能评价方法的发展方向。
关键词 公路 路面 使用性能 评价方 评价模型 回归模型法 系统分析 灰色理论
在线阅读 下载PDF
大尺度小样本情况下的数据预测方法对比研究 被引量:1
4
作者 李俊 杨蕊 周汝良 《林业调查规划》 2010年第5期7-11,共5页
采用反距离加权法(IDW)、协同克里格法(Cokriging)、回归模型法,利用云南省134个县(市)气象站观测数据对全省≥10°积温区域进行预测.结果表明,由于气象站点稀少,用不同的方法结合不同的辅助信息得到的预测结果不同.反距离加权法强... 采用反距离加权法(IDW)、协同克里格法(Cokriging)、回归模型法,利用云南省134个县(市)气象站观测数据对全省≥10°积温区域进行预测.结果表明,由于气象站点稀少,用不同的方法结合不同的辅助信息得到的预测结果不同.反距离加权法强调了空间距离尺度的影响,但未能较好地体现云南省局部积温的分布规律;协同克里格法则优于反距离加权法,但在样本数偏少的情况下预测结果会出现明显的凹凸现象;回归模型法预测结果能很好地体现云南省北低南高、西高东低的气温总体变化规律,又能体现峡谷地带中局部干热河谷的特点,是3种方法中效果最好的预测方法. 展开更多
关键词 积温 地统计学 空间插值 反距离加权(IDN) 协同克里格(Cokriging) 回归模型法
在线阅读 下载PDF
地应力测值评价方法研究 被引量:3
5
作者 韩晓玉 李永松 李峰 《人民长江》 北大核心 2011年第24期7-9,共3页
为了对地应力测值进行评价,探讨了地应力测值评价方法,提出采用测值平均测量误差对测值进行评价,主要用数学模型回归分析法和模型加载试验法对地应力测值进行评价,给出了两者的优缺点和适用范围。其中对数学模型回归分析法进行了应用分... 为了对地应力测值进行评价,探讨了地应力测值评价方法,提出采用测值平均测量误差对测值进行评价,主要用数学模型回归分析法和模型加载试验法对地应力测值进行评价,给出了两者的优缺点和适用范围。其中对数学模型回归分析法进行了应用分析,对物理模型加载试验法介绍了一般试验过程和试验准备。 展开更多
关键词 地应力 测值评价 应力测量 应力观测 数学模型回归分析 物理模型加载试验
在线阅读 下载PDF
农田土壤养分交换性镁的空间分布模拟方法比较--以昭阳区为例
6
作者 朱大运 陈婷 周汝良 《西南林业大学学报(自然科学)》 CAS 2012年第1期41-45,共5页
采用反距离加权法、径向基函数插值法、克里格法、回归模型法,以云南省昭阳区农田土壤养分采样数据为对象,对全区土壤交换性镁含量进行模拟。结果表明,由于中量元素分布的复杂性,不同模拟方法得到的预测精度不同;反距离加权法强调空间... 采用反距离加权法、径向基函数插值法、克里格法、回归模型法,以云南省昭阳区农田土壤养分采样数据为对象,对全区土壤交换性镁含量进行模拟。结果表明,由于中量元素分布的复杂性,不同模拟方法得到的预测精度不同;反距离加权法强调空间距离权重的影响,未能较好的反应分布规律;径向基函数插值法由于采样点数据具有很大的不确定性,故效果也不理想;克里格法误差最小,精度最高;回归模型法误差较大,但最能反应农田土壤交换性镁分布的地域特征和立体变化特征。 展开更多
关键词 农田土壤养分 交换性镁 反距离加权 径向基函数插值 克里格 回归模型法
在线阅读 下载PDF
智能交通系统的无线信道建模 被引量:2
7
作者 金婕 艾宝丽 《电讯技术》 北大核心 2015年第3期262-269,共8页
由于高速移动,车车、车路通信信道存在较大多普勒频移,同时接收信号到达角不符合均匀分布。针对该特点,采用了两种方法进行信道建模,一种是采用R.von Mises提出的概率密度谱函数对多径散射信号到达移动接收机的角度进行建模,另一种是通... 由于高速移动,车车、车路通信信道存在较大多普勒频移,同时接收信号到达角不符合均匀分布。针对该特点,采用了两种方法进行信道建模,一种是采用R.von Mises提出的概率密度谱函数对多径散射信号到达移动接收机的角度进行建模,另一种是通过研究接收机和发送机之间相对运动进行建模。采用自回归模型法,根据不同的到达角平均方向、发射机和接收机速度比率和到达角宽,建立了不同的车车信道。仿真结果表明所建立的信道理论值与仿真值基本一致,同时揭示了3个参数对车车、车路信道模型二阶特性的影响。为了进一步验证不同信道模型对车车、车路通信的影响,搭建了下一代智能交通通信协议IEEE 802.11p系统测试平台,结果表明在最大多普勒频移为790 Hz、信噪比为5 d B时,简单二维各向异性散射信道比AKKI信道的系统误比特率低17.17 d B,三种信道的误比特率随着移动速度、调制阶数的提高而提高。仿真结果为研究智能交通系统稳定通信建立了基础。 展开更多
关键词 智能交通系统 通信信道建模 各向异性散射 回归模型法
在线阅读 下载PDF
Analysis and Modeling of the Central Air-Conditioning System in Intelligent Buildings 被引量:6
8
作者 郭巧 徐庆伟 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期295-297,共3页
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ... The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods. 展开更多
关键词 intelligent building analysis and modeling central air conditioning energy saving
在线阅读 下载PDF
New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis 被引量:6
9
作者 Farhadian Hadi Katibeh Homayoon 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期415-421,共7页
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ... There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels. 展开更多
关键词 Groundwater inflow Analytical equation Multiple regression analysis Stepwise algorithm Tunnel
在线阅读 下载PDF
A fuzzy logic model to predict the out-of-seam dilution in longwall mining 被引量:2
10
作者 Ali Bahri Najafi Mohammad Ali Ebrahimi Farsangi Golam Reza Saeedi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期91-98,共8页
The longwall mining method is often affected by the out-of-seam dilution (OSD). Therefore, predicting and controlling of dilution are important factors for reducing mining costs. In this study, the fuzzy set theory ... The longwall mining method is often affected by the out-of-seam dilution (OSD). Therefore, predicting and controlling of dilution are important factors for reducing mining costs. In this study, the fuzzy set theory and multiple regression models with parameters, including variation in seam thickness, dip of seam, seam thickness, depth of seam, and hydraulic radius as inputs to the models were applied to pre- dict the OSD in the longwall coal panels. Field data obtained from Kerman and Tabas coal mines, lran were used to develop and validate the models. Three indices including coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were used to evaluate the perfor- mance of the models. With 10 randomly selected datasets, for the linear, polynomial, power, exponential, and fuzzy logic models, R2, RSME and VAF are equal to (0.85, 4.4, 84.4), (0.61, 7.5, 59.6), (0.84, 4.5, 72.7), (0.80, 4.1, 79.6), and (0.97, 2.1, 95.7), respectively. The obtained results indicate that the fuzzy logic model predictor with R2 = 0.97, RMSE = 2.1, and VAF = 95.7 performs better than the other models. 展开更多
关键词 Out-of-seam dilutionLongwall coal miningRegression modelingFuzzy set theoryKerman and Tabas coal mines
在线阅读 下载PDF
A method to calculate displacement factors using SVM 被引量:5
11
作者 Li Peixian Tan Zhixiang +1 位作者 Yan Lili Deng Kazhong 《Mining Science and Technology》 EI CAS 2011年第3期307-311,共5页
In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive ... In order to improve the precision of mining subsidence prediction, a mathematical model using Support Vector Machine (SVM) was established to calculate the displacement factor. The study is based on a comprehensive analysis of factors affecting the displacement factor, such as mechanical properties of the cover rock, the ratio of mining depth to seam thickness, dip angle of the coal seam and the thickness of loose layer. Data of 63 typical observation stations were used as a training and testing sample set. A SVM regression model of the displacement factor and the factors affecting it was established with a kernel function, an insensitive loss factor and a properly selected penalty factor. Given an accurate calculation algorithm for testing and analysis, the results show that an SVM regression model can calcu- late displacement factor precisely and reliable precision can be obtained which meets engineering requirements. The experimental results show that the method to calculation of the displacement factor, based on the SVM method, is feasible. The many factors affecting the displacement factor can be consid- ered with this method. The research provides an efficient and accurate approach for the calculation of displacement in mining subsidence orediction. 展开更多
关键词 Mining subsidence Displacement factor SVM Probability integration method
在线阅读 下载PDF
Development of a mass model in estimating weight-wise particle size distribution using digital image processing 被引量:4
12
作者 Maiti Abhik Chakravarty Debashish +1 位作者 Biswas Kousik Halder Arpan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期435-443,共9页
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a... Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving. 展开更多
关键词 Particle size distribution Image analysis Particle shape parameters Weight/particle ratio Sieve analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部