期刊文献+
共找到860篇文章
< 1 2 43 >
每页显示 20 50 100
基于回归支持向量机的指标规范值的水质评价模型 被引量:32
1
作者 李祚泳 张正健 《中国环境科学》 EI CAS CSCD 北大核心 2013年第8期1502-1508,共7页
传统的回归支持向量机的水质评价模型不具有普适性和通用性,当指标较多时,模型的学习效率和求解精度均会受到影响.若适当设定3类水体(地表水、地下水和富营养化水体)各项指标的参照值及指标值的规范变换式,使不同指标的同级标准的规范... 传统的回归支持向量机的水质评价模型不具有普适性和通用性,当指标较多时,模型的学习效率和求解精度均会受到影响.若适当设定3类水体(地表水、地下水和富营养化水体)各项指标的参照值及指标值的规范变换式,使不同指标的同级标准的规范值差异不大,从而可以认为用规范值表示的不同指标皆'等效'于某个规范指标.因此,可建立用规范值表示的任意m项指标组合皆适用的水质评价的回归支持向量机模型.通过实例对模型的实用性进行了效果检验,结果表明:用基于回归支持向量机的指标规范值的水质评价模型对河桥地表水、黑龙洞泉域地下水和山仔水库富营养化水体的水质评价结果与用BP神经网络评价法、模糊综合评价法和属性识别评价法的评价结果基本一致. 展开更多
关键词 指标 规范变换 水质评价 回归支持向量机 模型
在线阅读 下载PDF
基于回归支持向量机的胎儿心电提取 被引量:4
2
作者 蒲秀娟 曾孝平 +1 位作者 韩亮 程军 《数据采集与处理》 CSCD 北大核心 2009年第6期738-743,共6页
针对胎儿心电难以提取的问题,提出一种从母体腹壁混合信号中提取胎儿心电的方法。首先利用回归支持向量机(Support vector regression machine,SVRM)拟合母体心电传导至腹壁所经历的非线性变换,然后将母体心电经由所拟合的非线性变换得... 针对胎儿心电难以提取的问题,提出一种从母体腹壁混合信号中提取胎儿心电的方法。首先利用回归支持向量机(Support vector regression machine,SVRM)拟合母体心电传导至腹壁所经历的非线性变换,然后将母体心电经由所拟合的非线性变换得到腹壁混合信号中的母体心电干扰的最优估计,再从腹壁混合信号中减去母体心电干扰的最优估计得到含噪声的胎儿心电,最后通过小波包去噪技术抑制胎儿心电中的基线漂移和噪声,得到清晰的胎儿心电。在胎儿心电和母体心电QRS波完全重叠的情况下,通过该方法能够提取出清晰的胎儿心电。实验结果验证了该方法的有效性。 展开更多
关键词 胎儿心电 非线性变换 回归支持向量机 小波包去噪
在线阅读 下载PDF
回归支持向量机模型及其在年径流预测中的应用 被引量:3
3
作者 魏胜 《水资源与水工程学报》 2014年第2期213-217,共5页
研究交叉验证(CV)SVR年径流预测模型,以云南省清水江革雷站为例进行实例分析。利用SPSS软件选取年径流影响因子,确定输入向量;采用CV方法搜寻SVR惩罚因子C和核函数参数g,构建CV-SVR多元变量年径流预测模型,并构建GA-BP、传统BP模型作为... 研究交叉验证(CV)SVR年径流预测模型,以云南省清水江革雷站为例进行实例分析。利用SPSS软件选取年径流影响因子,确定输入向量;采用CV方法搜寻SVR惩罚因子C和核函数参数g,构建CV-SVR多元变量年径流预测模型,并构建GA-BP、传统BP模型作为对比模型。利用所构建的模型对实例进行预测。结果表明:CVSVR模型对实例后15年年径流预测的平均相对误差绝对值和最大相对误差绝对值分别为3.4596%、9.3035%,预测精度和泛化能力均优于GA-BP、传统BP模型,表明CV能有效搜寻SVR惩罚因子C和核函数参数g。CV-SVR模型具有预测精度高、泛化能力强以及算法稳定等特点。 展开更多
关键词 回归支持向量机 交叉验证 BP神经网络 遗传算法 径流预测
在线阅读 下载PDF
基于回归支持向量机的水库防洪承载力预测模型研究 被引量:2
4
作者 王正华 包为民 +1 位作者 孙逸群 侯露 《水文》 CSCD 北大核心 2022年第2期30-35,共6页
防洪承载力,即水库目前剩余防洪库容条件下,不泄洪所能容纳的流域面降雨量。根据水量平衡原理分析概化出防洪承载力的预报因子为当前土壤含水量,当前入库流量以及水库剩余库容。利用2010—2020年青山水库55场历史洪水建立基于回归支持... 防洪承载力,即水库目前剩余防洪库容条件下,不泄洪所能容纳的流域面降雨量。根据水量平衡原理分析概化出防洪承载力的预报因子为当前土壤含水量,当前入库流量以及水库剩余库容。利用2010—2020年青山水库55场历史洪水建立基于回归支持向量机的防洪承载力预测模型,利用贝叶斯优化进行超参数率定,通过分析预测值确定回归支持向量机核函数为线性,预测值与实测值相关系数为0.9527,平均绝对百分误差为24.2853%,预测偏小百分比为49.0909%,表明模型精度较高且计算结果较为稳定,可为水库防洪提供参考。 展开更多
关键词 水库防洪承载力预报 回归支持向量机 贝叶斯优化 核函数
在线阅读 下载PDF
河流健康评价的回归支持向量机模型及应用 被引量:5
5
作者 刘艳 《水资源保护》 CAS 2014年第3期25-30,共6页
建立河流健康评价指标体系、分级标准及回归支持向量机(SVR)河流健康评价模型,并以云南省文山州清水河健康评价为例进行研究。首先,利用层次分析法(AHP)从水文水资源、物理结构、水质、水生生物和社会服务功能5个方面遴选出13个评价指标... 建立河流健康评价指标体系、分级标准及回归支持向量机(SVR)河流健康评价模型,并以云南省文山州清水河健康评价为例进行研究。首先,利用层次分析法(AHP)从水文水资源、物理结构、水质、水生生物和社会服务功能5个方面遴选出13个评价指标,构建3个层次的河流健康评价指标体系和5个等级的分级标准;其次,基于SVR原理,利用随机生成和随机选取的方法,在等级标准阈值间构造5种不同容量大小的训练样本和检验样本,提出5种不同容量方案的SVR河流健康评价模型,设计合理的输出模式,并构建具有良好性能的RBF(radial basis function neural network)回归模型作为对比模型,利用模型随机5次运行的平均相对误差绝对值、最大相对误差绝对值和运行时间对各方案模型性能进行评价;最后,利用达到期望精度的SVR模型对实例进行评价分析。结果表明:①无论是训练样本还是检验样本,5种方案的SVR模型的预测精度和泛化能力均优于RBF模型。在相同参数设置条件下,SVR模型随着样本容量的增加其精度和泛化能力变化不大;而RBF模型随着样本容量的增加其精度和泛化能力均有提高。表明SVR模型具有较高的精度和泛化能力,可以用于河流健康评价,尤其在小样本情况下,SVR模型的精度和泛化能力是RBF模型不可比拟的。②5种方案的SVR模型对清水河2011—2012年3次调查的评价结果均为健康,但已接近于亚健康。 展开更多
关键词 河流健康 指标体系 分级标准 回归支持向量机 综合评价 云南省
在线阅读 下载PDF
基于多元变量组合的回归支持向量机集成模型及其应用 被引量:29
6
作者 崔东文 《水利水运工程学报》 CSCD 北大核心 2014年第2期66-73,共8页
为进一步提高径流预测的精度和泛化能力,提出基于多元变量组合的回归支持向量机(SVR)集成年径流预测模型,以云南省龙潭站年均径流预测为例进行实例研究。首先,以实例1-10月月均流量作为预测因子,采用相关分析法确定预测因子与年... 为进一步提高径流预测的精度和泛化能力,提出基于多元变量组合的回归支持向量机(SVR)集成年径流预测模型,以云南省龙潭站年均径流预测为例进行实例研究。首先,以实例1-10月月均流量作为预测因子,采用相关分析法确定预测因子与年均径流量的相关系数,按照相关系数大小顺序依次选取预钡4因子,构建2维输入变量-10维输入变量的9种SVR模型对实例后12年的年均径流量进行预测。最后,采用简单平均(SA)和加权平均(WA)两种集成方法对具有较高预测精度的7种SVR模型的预测结果进行综合集成。结果表明:①SVR模型的预测精度随着输入变量维数的增加明显提高。②SA-SVR和WA—SVR模型对实例后12年年均径流量预测的平均相对误差绝对值分别为1.73%和1.79%,最大相对误差绝对值分别为6.34%和6.47%,精度和泛化能力均优于各SVR模型。相对而言,由于采用多个SVR模型进行集成,SA-SVR模型预测效果略优于WA—SVR模型。 展开更多
关键词 径流预测 集成模型 回归支持向量机(SVR) 简单平均法 加权平均法
在线阅读 下载PDF
回归支持向量机集成模型在年径流预测中的应用 被引量:7
7
作者 代兴兰 《长江科学院院报》 CSCD 北大核心 2015年第4期12-17,共6页
为进一步提高径流预测精度和泛化能力,根据回归支持向量机(SVR)特性及基本原理,提出考虑不同影响因子(输入向量)的SVR集成预测模型,以云南省南盘江西桥站1961—2007年径流预测为例进行实例研究。首先,利用相关分析法选取年径流预测的若... 为进一步提高径流预测精度和泛化能力,根据回归支持向量机(SVR)特性及基本原理,提出考虑不同影响因子(输入向量)的SVR集成预测模型,以云南省南盘江西桥站1961—2007年径流预测为例进行实例研究。首先,利用相关分析法选取年径流预测的若干影响因子,依次构建不同影响因子的SVR单一模型对研究实例进行预测,并构建对应的RBF模型作为对比预测模型;然后,采用加权平均和简单平均2种方法对具有较好预测精度和互补性的单一模型的预测结果进行综合集成。结果表明:基于SVR的加权平均和简单平均2种集成模型径流预测的平均相对误差绝对值分别为1.27%和1.54%,最大相对误差绝对值分别为2.99%和2.74%,其精度和泛化能力均大幅优于各单一模型以及基于RBF的加权平均和简单平均集成模型,表明加权平均SVR和简单平均SVR集成模型具有较高的预测精度和泛化能力。相对而言,加权平均集成模型赋予了预测效果好的模型更大的权重,预测精度和泛化能力均优于简单平均集成模型。预测模型和方法可为相关预测研究提供参考和借鉴。 展开更多
关键词 径流预测 集成模型 回归支持向量机 加权平均 简单平均
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
8
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
9
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
10
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
基于变量敏感度筛选的回归型支持向量机的数控机床热误差预测 被引量:2
11
作者 李铁军 崔尚仪 张义民 《机械设计与制造》 北大核心 2024年第9期41-43,50,共4页
随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低... 随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低的干扰自变量。本方法与基本SVR模型对数控机床热误差预测值进行对比,结果表明基本SVR受到敏感度低的干扰自变量影响,预测结果与实测热误差结果偏差较大;经过变量敏感度筛选之后的SVR混合模型预测值具有更高的准确度,验证了此模型的可行性。 展开更多
关键词 数控 回归支持向量 变量敏感度筛选 热误差
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
12
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求
13
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
结合支持向量机回归应用于水体中两种喹诺酮类抗生素的荧光检测 被引量:1
14
作者 王艺霏 王晓东 +2 位作者 Zakhar Maletskyi 王莎莎 马继平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第12期3576-3582,共7页
喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度... 喹诺酮类抗生素(QNs)因其高效的抗菌作用被广泛应用于疾病治疗和动物养殖,过量使用的QNs随着污水排放在自然水体中累积,导致自然水体中抗性细菌和抗性基因过量滋生,对环境生态以及人类健康构成严重威胁。传统的QNs检测方法的检测灵敏度高、准确度好,但时间消耗较久、仪器设备价格昂贵、现场检测较困难,而荧光分析技术检测时间短,尤其是三维荧光光谱技术能够在短时间内通过一次检测获得大量的目标物特征信息,通过与数据统计及机器学习模型相结合,利用数学手段可以在短时间内对多种QNs进行检测。充分利用QNs的荧光光谱信息,结合支持向量机回归(SVMR)分别创建以氧氟沙星(OFL)和诺氟沙星(NOR)为代表的QNs预测模型,再将未知样品的荧光光谱信息代入到创建的模型中,即可快速获得测定结果。在构建模型的过程中将偏最小二乘-判别分析(PLS-DA)和SVMR这两种监督学习方式作比较,发现SVMR具有良好的预测效果,通过调整参数与核函数,可使OFL和NOR在2~600μg·L^(-1)范围内具有良好的线性范围,线性相关系数均为0.9920,最低检出限在0.064~0.080μg·L^(-1)之间。将该方法应用到青岛市近岸海水和水库水的QNs检测,OFL在海水中的平均加标回收率为98.62%,在水库水中的平均加标回收率为103.90%,NOR在海水中的平均加标回收率为104.01%,在水库水中的平均加标回收率为105.89%,两种QNs在实际水体中的标准偏差均不超过9.21%。该方法检测速度快,在3 min内即可完成对一个未知样品的定量分析,可以快速筛查环境中是否存在QNs的风险因素。创新性的采用SVMR与荧光光谱技术相结合的方法,研发了一种可以用于实际水体中QNs现场快速检测的新方法,为实现环境水体中QNs的现场快速检测提供了一种科学可靠的新思路。 展开更多
关键词 荧光光谱 支持向量回归 喹诺酮类抗生素 现场快速检测
在线阅读 下载PDF
基于主成分分析的果蝇算法优化支持向量机回归的红枣产量预测 被引量:4
15
作者 李晋泽 赵素娟 +3 位作者 李宁 李俊成 刘森 马继东 《科学技术与工程》 北大核心 2024年第4期1425-1432,共8页
随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal compone... 随着大数据技术和人工智能的快速发展,针对当前红枣产量预测模型精度低、模型优化时间过长等问题,以山西省1993—2020年的红枣产量及17个维度的因素作为基础数据,提出一种基于主成分分析的果蝇算法优化支持向量机回归(principal component analysis-fruit fly optimization algorithm-support vector regression,PCA-FOA-SVR)的红枣产量预测模型。首先利用主成分分析(principal component analysis,PCA)对数据进行降维处理,以5维的指标作为输入变量,产量作为输出变量;其次以支持向量机回归(support vector regression,SVR)为基础模型,利用果蝇优化算法(fruit fly optimization algorithm,FOA)对SVR参数惩罚因子c和核函数参数g进行寻优,构建PCA-FOA-SVR模型。对试验结果进行验证。发现PCA-FOA-SVR的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、决定系数R 2分别为3.11、3.01、0.96,SVR的各指标分别为5.33、4.07、0.9,分别提高了41.7%、26%、6.7%,最后通过GM(1,1)对各维度的数据进行预测,利用PCA-FOA-SVR模型对未来10年山西省红枣产量进行预测,结果显示在2025年红枣产量会达到一个峰值,对后续相关研究提供了一定的科学依据。 展开更多
关键词 红枣产量预测 支持向量回归(SVR) 果蝇算法(FOA) 主成分分析(PCA)
在线阅读 下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:6
16
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量回归 灰狼优化算法
在线阅读 下载PDF
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
17
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 客舱座椅 支持向量回归 粒子群算法 舒适度评价预测
在线阅读 下载PDF
增量式稀疏密度加权孪生支持向量回归机
18
作者 丁伟杰 顾斌杰 潘丰 《计算机工程》 CAS CSCD 北大核心 2024年第7期123-132,共10页
密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首... 密度加权孪生支持向量回归机(DWTSVR)是一种能够反映数据内在分布的回归算法,具有预测精度高和鲁棒性强等优点,然而其并不适用于训练样本以增量形式提供的场景。针对该问题,提出一种增量式稀疏密度加权孪生支持向量回归机(ISDWTSVR)。首先,辨别新增数据是否为异常样本,并赋予有效样本适当的权重,减小异常样本对模型泛化性能的影响;其次,结合矩阵降维与主成分分析思想筛选出原始核矩阵中的一组特征列向量基代替原特征,实现核矩阵列稀疏化,以获得稀疏解;接着,借助牛顿迭代法和增量学习策略对上一时刻的模型信息进行调整,实现模型的增量更新,同时结合矩阵求逆引理避免增量更新过程中直接求解逆矩阵,进一步加快训练速度;最后,在UCI基准数据集上进行仿真实验,并与现有代表性算法进行比较。实验结果表明,ISDWTSVR继承了DWTSVR的泛化性能,在大规模数据集Bike-Sharing上,新增一个样本模型更新平均CPU时间为5.13 s,较DWTSVR缩短了97.94%,有效地解决了模型必须从头开始重新训练的问题,适用于大规模数据集的在线学习。 展开更多
关键词 孪生支持向量回归 增量学习 稀疏化 密度加权 牛顿迭代法
在线阅读 下载PDF
基于回归型支持向量机的空战目标威胁评估 被引量:35
19
作者 郭辉 徐浩军 刘凌 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第1期123-126,共4页
空战目标威胁评估是协同多目标攻击中的关键问题.针对传统空战目标威胁评估方法在确定权重系数方面的不足,提出了一种新的基于回归型支持向量机的评估方法.在分析了现有的空战目标威胁评估方法中距离威胁模型存在缺陷的基础上,提出了改... 空战目标威胁评估是协同多目标攻击中的关键问题.针对传统空战目标威胁评估方法在确定权重系数方面的不足,提出了一种新的基于回归型支持向量机的评估方法.在分析了现有的空战目标威胁评估方法中距离威胁模型存在缺陷的基础上,提出了改进的距离威胁模型.建立了基于回归型支持向量机的空战目标威胁评估模型,利用该模型对想定的空战目标进行了威胁评估.仿真结果表明,该方法具有很好的预测能力,可以快速、准确地完成空战目标威胁评估. 展开更多
关键词 空战 威胁评估 支持向量 回归支持向量
在线阅读 下载PDF
基于遗传算法的回归型支持向量机参数选择法 被引量:42
20
作者 李良敏 温广瑞 王生昌 《计算机工程与应用》 CSCD 北大核心 2008年第7期23-26,共4页
研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题... 研究了遗传算法在回归型支持向量机参数选择中的应用:首先,分析了支持向量机的几个参数对其预报能力的影响,发现参数选取不当,会导致支持向量机出现过学习或欠学习现象;在此基础上提出利用遗传算法来解决回归型支持向量机的参数选择问题,模拟实验证明,该方法克服了传统参数选择方法存在的缺点,提高了支持向量机的预报精度。 展开更多
关键词 回归支持向量 遗传算法 参数选择
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部