期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s模型的边界框回归损失函数研究 被引量:14
1
作者 董恒祥 潘江如 +2 位作者 董芙楠 赵晴 郭鸿鑫 《现代电子技术》 北大核心 2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率... 针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。 展开更多
关键词 车辆检测 边界框回归损失函数 目标尺度 YOLOv5s CIoU SIoU Focal-EIoU WIoU
在线阅读 下载PDF
基于位置约束与注意力的低空无人机障碍物检测方法 被引量:1
2
作者 唐友军 缪存孝 +2 位作者 张贺 李玉峰 叶文 《北京航空航天大学学报》 北大核心 2025年第3期933-942,共10页
无人机(UAV)在低空领域广泛应用于电力巡检、搜救、侦察等任务,对飞行过程中的障碍物进行提前检测是完成既定任务的安全保障。为满足无人机低空飞行时对障碍物的检测精度要求及位置回归精度要求,提出一种基于位置约束与注意力改进的低... 无人机(UAV)在低空领域广泛应用于电力巡检、搜救、侦察等任务,对飞行过程中的障碍物进行提前检测是完成既定任务的安全保障。为满足无人机低空飞行时对障碍物的检测精度要求及位置回归精度要求,提出一种基于位置约束与注意力改进的低空无人机障碍物检测方法。分析位置回归损失函数的不足并基于此提出分离尺度损失与融合方向约束的损失函数对回归过程进行优化;改进注意力机制CBAM提出双重注意力机制以强化特征抑制干扰,提高检测性能。实验结果表明:本文方法在mAP上提高了2.28%,在mAP@0.5:0.95上提高了2.7%,在检测精度和位置回归精度上都表现出了更好的低空障碍物检出性能。 展开更多
关键词 低空无人机 障碍物检测 位置回归损失函数 双重注意力机制 位置回归损失函数
在线阅读 下载PDF
特征增强的低照度爆破现场安全帽检测算法
3
作者 王新良 王璐莹 《计算机工程》 北大核心 2025年第3期252-260,共9页
安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先... 安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先,在主干网络使用软池化构建软空间金字塔池化模块(SSPPM),减少了特征映射中的信息弥散,并在下采样映射中保留了更多上下文信息;其次,设计基于高效通道注意力(ECA)机制的高效特征融合模块(EFFM),加强了模型对目标区域特征的学习,提高了特征融合的效率,减少了模型误检情况的出现;再次,采用VariFocalLoss替代BCEWithlogitsLoss,动态调整正负样本的权重,使得模型关注数量较少的正样本,加速了模型的收敛过程,提升了两类目标的检测精度;最后,采用CIoU作为边框回归损失函数,提高了模型定位目标预测框的精度。实验结果表明,所提算法的均值平均精度(mAP)相较于基线算法提升了2.21百分点,每秒处理的图像数量提升了7.67,满足了低照度爆破现场安全帽实时检测的精度和速度需要。 展开更多
关键词 安全帽检测 YOLOX-s算法 注意力机制 边框回归损失函数 置信度损失函数
在线阅读 下载PDF
基于尺度无关损失优化的无锚图像目标检测 被引量:1
4
作者 贾世耀 杨祥 潘思琦 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第6期180-184,共5页
遥感影像中的目标检测是图像分析领域的一个基本而又具有挑战性的问题,特别是针对任意对象的海上目标检测近年来受到广泛关注。针对任意对象的图像目标尺度和形状不规则导致的目标检测参数敏感以及复杂背景和密集排列在非极大值抑制过... 遥感影像中的目标检测是图像分析领域的一个基本而又具有挑战性的问题,特别是针对任意对象的海上目标检测近年来受到广泛关注。针对任意对象的图像目标尺度和形状不规则导致的目标检测参数敏感以及复杂背景和密集排列在非极大值抑制过程中出现假阴性的问题,提出了基于尺度基于尺度无关损失优化的无锚图像目标检测算法。将旋转边界框回归引入到典型的无锚网络全卷积单级目标检测器中,提出了与尺度无关的GIoU(SGIoU)损失用于图像目标检测的边界框回归,可以快速将预测框的形状调整为开始时与真实相似的形状,解决回归损失函数与检测器最终最优目标之间的不相容性的问题,并在回归过程中加快收敛速度。数据集实验表明:本方法在各类别P-R曲线下面积的平均值(mAP),优于现有的广义交并比(GIoU)损失函数和完全交并比(CIoU)损失函数函数。 展开更多
关键词 无锚 回归损失函数 面向任意对象检测 尺度无关性 图像目标检测
在线阅读 下载PDF
基于距离感知的金属缺陷样本标签分配算法
5
作者 朱传军 梁泽启 +1 位作者 付强 张超勇 《中国机械工程》 EI CAS CSCD 北大核心 2024年第9期1634-1641,共8页
针对金属表面缺陷检测模型在训练过程中正负样本分配时不考虑金属表面缺陷的宽高比、对目标分布的定位能力差等问题,提出了距离感知的动态标签分配(DDA)算法。DDA不改变原有检测模型的结构也不增加计算开支,根据真实框的几何特性提出新... 针对金属表面缺陷检测模型在训练过程中正负样本分配时不考虑金属表面缺陷的宽高比、对目标分布的定位能力差等问题,提出了距离感知的动态标签分配(DDA)算法。DDA不改变原有检测模型的结构也不增加计算开支,根据真实框的几何特性提出新的距离损失计算范式,以优化宽高比悬殊的回归问题,将迭代过程中的回归偏移量解码为预测框坐标,最后计算预测框、锚框和真实框三者之间综合交并比信息,动态地选择正负样本以提高训练精度。在武汉某钢厂冷轧带钢表面缺陷检测中进行了验证,并引入公开的热轧带钢表面缺陷数据集进行了泛化试验,检测效果均有显著改善,对金属表面质量规范有实际应用价值。 展开更多
关键词 目标检测 样本选择策略 宽高比 金属缺陷检测 距离回归损失函数
在线阅读 下载PDF
基于改进YOLOv4的苹果采摘机器人树枝障碍物深度识别 被引量:1
6
作者 黄哲 唐仕喜 +2 位作者 沈冠东 高心悦 王仕廉 《湖北农业科学》 2024年第8期10-16,22,共8页
为识别特征不明显的树枝,尤其是机械手进行苹果采摘时遮挡住苹果位置的树枝,提出了一种结合语义分割和YOLOv4来获取树枝语义骨架,以及识别出树枝位置框的方法。采用语义分割划分树枝矩形包络的方法,剔除影响树枝识别效果的小树枝和分支... 为识别特征不明显的树枝,尤其是机械手进行苹果采摘时遮挡住苹果位置的树枝,提出了一种结合语义分割和YOLOv4来获取树枝语义骨架,以及识别出树枝位置框的方法。采用语义分割划分树枝矩形包络的方法,剔除影响树枝识别效果的小树枝和分支,再用labelImg和labelme工具对数据集进行标注;对训练的网络模型添加了3层最大池化层,并在回归损失方面对YOLOv4的CIOU回归损失函数进行了改进,提出了针对复杂特征、适范围提高预测准确率的置信度相关函数BIOU。结果表明,改进的YOLOv4网络模型训练遮挡苹果位置树枝的F1和AP分别比原始网络训练全部树枝高出20.00个百分点和23.36个百分点,获得训练效果更好的数据集和树枝识别网络。 展开更多
关键词 树枝识别 YOLOv4 语义分割 数据集训练 BIOU边框回归损失函数
在线阅读 下载PDF
基于深度学习的生姜种芽快速识别及其朝向判定 被引量:11
7
作者 侯加林 房立发 +2 位作者 吴彦强 李玉华 席芮 《农业工程学报》 EI CAS CSCD 北大核心 2021年第1期213-222,共10页
针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式... 针对目前生姜机械化播种难以实现“种芽朝向一致”农艺要求的问题,该研究提出了一种基于深度学习的生姜种芽快速识别及其朝向判定的方法。首先,构建生姜数据集。其次,搭建YOLO v3网络进行种芽的识别,包括:使用Mosaic等在线数据增强方式,增加图像的多样性,解决小数据集训练时泛化能力不足的问题;引入DIoU(Distance Intersection over Union)边框回归损失函数来提高种芽识别回归效果;使用基于IoU的K-means聚类方法,经线性尺度缩放得到9个符合种芽尺寸的先验框,减少了先验框带来的误差。最后进行壮芽的选取及其朝向的判定。测试集中的结果表明,该研究提出的生姜种芽识别网络,平均精度和精准率、召回率的加权调和平均值F1分别达到98.2%和94.9%,采用GPU硬件加速后对生姜种芽的检测速度可达112帧/s,比原有YOLO v3网络的平均精度和F1值分别提升1.5%和4.4%,实现了生姜种芽的快速识别及其朝向的判定,为生姜自动化精确播种提供了技术保证。 展开更多
关键词 图像识别 算法 卷积神经网络 生姜种芽 DIoU边框回归损失函数
在线阅读 下载PDF
基于改进YOLOv5算法的农田杂草检测 被引量:13
8
作者 王宇博 马廷淮 陈光明 《中国农机化学报》 北大核心 2023年第4期167-173,共7页
随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式... 随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式,提高模型泛化性;通过添加注意力机制,增强主干网络的特征提取能力;通过改进框回归损失函数,提升预测框的准确率。试验表明,在芝麻作物和多种杂草的复杂环境下,本文方法的检测平均精度均值mAP为90.6%,杂草的检测平均精度AP为90.2%,比YOLOv5s模型分别提高4.7%和2%。在本文试验环境下,单张图像检测时间为2.8 ms,可实现实时检测。该研究内容可以为农田智能除草设备提供参考。 展开更多
关键词 杂草检测 YOLOv5 数据增强 注意力机制 回归损失函数
在线阅读 下载PDF
基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法 被引量:75
9
作者 吕石磊 卢思华 +3 位作者 李震 洪添胜 薛月菊 吴奔雷 《农业工程学报》 EI CAS CSCD 北大核心 2019年第17期205-214,共10页
柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框... 柑橘识别是实现柑橘园果实自动采摘、果树精细化管理以及实现果园产量预测的关键技术环节。为实现自然环境下柑橘果实的快速精准识别,该文提出一种基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法。在采摘机器人领域,果实识别回归框的准确率直接决定了机器手的采摘成功率,该方法通过引入GIoU边框回归损失函数来提高果实识别回归框准确率;为便于迁移到移动终端,提出一种YOLOv3-LITE轻量级网络模型,使用MobileNet-v2作为模型的骨干网络;使用混合训练与迁移学习结合的预训练方式来提高模型的泛化能力。通过与Faster-RCNN以及SSD模型对比在不同遮挡程度的测试样本下模型的识别效果,用F1值与AP值评估各模型的差异,试验结果表明:该文提出的模型识别效果提升显著,对于果实轻度遮挡的数据集,该文提出的柑橘识别模型的F1值和AP值分别为95.27%和92.75%,AverageIoU为88.65%;在全部测试集上,F1值和AP值分别为93.69%和91.13%,Average IoU为87.32%,在GPU上对柑橘目标检测速度可达246帧/s,对单张416×416的图片推断速度为16.9 ms,在CPU上检测速度可达22帧/s,推断速度为80.9 ms,模型占用内存为28 MB。因此,该文提出的柑橘识别方法具有模型占用内存低、识别准确率高及识别速度快等优点,可为柑橘采摘机器人以及柑橘产业产量预测提出新的解决方案,为柑橘产业智能化提供新的思路。 展开更多
关键词 神经网络 果树 算法 柑橘 YOLOv3-LITE 混合训练 迁移学习 GIoU边框回归损失函数
在线阅读 下载PDF
改进YOLOv5的交通标志检测方法 被引量:14
10
作者 韦强 胡晓阳 赵虹鑫 《计算机工程与应用》 CSCD 北大核心 2023年第13期229-237,共9页
交通标志检测对自动驾驶和车辆安全具有重要意义,但交通标志受光照影响尺度变化较大,存在遮挡等情况导致模型检测精度较低,有误检、漏检等问题。基于YOLOv5目标检测算法,提出了一种改进的交通标志检测方法。该方法引入递归门控卷积、SOC... 交通标志检测对自动驾驶和车辆安全具有重要意义,但交通标志受光照影响尺度变化较大,存在遮挡等情况导致模型检测精度较低,有误检、漏检等问题。基于YOLOv5目标检测算法,提出了一种改进的交通标志检测方法。该方法引入递归门控卷积、SOCA注意力机制和回归损失函数,在TT100K和CCTSDB数据集上进行了大量实验。实验结果表明,改进的YOLOv5在TT100K数据集上平均准确率(mAP)提高了43.7个百分点,mAP@0.5:0.95提高了34.6个百分点,在CCTSDB数据集上平均准确率(mAP)提高了2个百分点,mAP@0.5:0.95提高了1个百分点。 展开更多
关键词 交通标志检测 递归门控卷积 注意力机制 回归损失函数
在线阅读 下载PDF
面向密集场景结合TC-YOLOX的小目标检测方法 被引量:2
11
作者 李翔宇 王伟 +1 位作者 王峰萍 韩岩江 《电子测量技术》 北大核心 2023年第15期133-142,共10页
密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer E... 密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC-YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer Encode模块,不断更新目标权重实现增强目标特征信息,提高网络的特征提取能力;其次,在特征金字塔网络中增加卷积注意力机制模块,关注重要特征并抑制不必要特征,提高不同尺度目标的检测准确度;然后,采用CIoU代替IoU作为回归损失函数,使得模型训练过程中网络收敛更快,性能更好;最后在PASCAL VOC 2007数据集上验证。实验结果表明,所设计的TC-YOLOX模型能够有效的检测出多样化场景中正常、密集、稀疏、黑暗条件下的小目标物体,mAP和检测速度可以达到94.6%和38 fps,与原始模型相比提升了10.9%和1 fps,对多种密集场景下的小目标检测任务均具有较好的适用性。 展开更多
关键词 小目标检测 YOLOX 卷积注意力机制模块 Transformer Encode CIoU回归损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部