期刊文献+
共找到3,164篇文章
< 1 2 159 >
每页显示 20 50 100
基于优化支持向量回归机的气浮单元水质预测模型 被引量:1
1
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于优化的支持向量机模型评估和预测社会-生态系统脆弱性——以陕南秦巴山区为例 被引量:1
2
作者 李润阳 陈佳 +3 位作者 杨新军 尹莎 徐俐 白玉玲 《生态学报》 北大核心 2025年第5期2281-2297,共17页
随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模... 随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模型,将SESV分解为暴露风险、敏感性和适应能力三个维度共48个指标,定量评估了2000—2020年陕南秦巴山区SESV及其各维度的空间分布特征,随后构建支持向量机模型,通过对比三种算法优化后的模型精度选取最优模型并预测2020—2050年陕南秦巴山区SESV及其各维度的时空分布和演化特征。结果显示:①陕南秦巴山区的SESV整体处于中低脆弱水平,在空间上呈现“中部高,南北低”的分布格局。②粒子群算法优化的支持向量机模型的准确性最优,且选取合适的训练样本数量能进一步改善预测性能。③预测结果显示,陕南秦巴山区SESV得到了显著降低,社会⁃生态系朝着良好态势发展。其中,暴露风险与SESV具有趋同性且地区间的差异变小,敏感性与适应能力维度均呈现“西高东低”的态势但地区间的差异并未缓解。研究旨在通过中国山区典型案例分析为SESV评估与预测提供参考依据。 展开更多
关键词 社会⁃生态系统 脆弱性 支持向量模型 优化算法 陕南秦巴山区
在线阅读 下载PDF
基于贝叶斯优化支持向量回归的煤自燃温度预测模型 被引量:1
3
作者 杨海燕 胡新成 +1 位作者 蔡佳文 余照阳 《工矿自动化》 北大核心 2025年第7期36-43,51,共9页
针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标... 针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标气体数据进行收集与处理。利用Spearman相关性分析选择与煤温相关性较强的指标气体并分析指标气体生成量间的共线性;对选择的指标气体进行主成分分析,解决多重共线性问题的同时降低维数;采用5折交叉验证方法划分训练集和测试集,通过平均绝对误差(MAE)、均方根误差(RMSE)和判定系数(R^(2))指标,对BO-SVR模型的性能与SVR、粒子群优化SVR(PSO-SVR)和遗传算法优化SVR(GA-SVR)模型进行定量评价。结果表明,BO-SVR模型的MAE较其他3种模型分别降低了74.2%,36.7%和10.2%,RMSE分别降低了71.9%,33.3%和11.4%,R^(2)达0.9885,高于其他模型。选取山西煤炭进出口集团河曲旧县露天煤业有限公司的烟煤煤样开展平行试验,BO-SVR模型在新数据集上的MAE为4.9279℃,RMSE为6.4899℃,R^(2)达0.9853,与原数据集预测结果保持高度一致性。表明BO-SVR模型具有较好的泛化性、预测精度和鲁棒性,有助于提高预测煤自燃温度的准确性。 展开更多
关键词 煤自燃 贝叶斯优化 支持向量回归 指标气体 预测模型
在线阅读 下载PDF
基于模糊支持向量机的光纤通信网络攻击辨识数学模型
4
作者 温新苗 黄红芳 董晓菲 《激光杂志》 北大核心 2025年第7期161-167,共7页
面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信... 面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信号。从源信号中提取占空比特征、频率中心特征和能量占比特征。以特征来描述训练样本,通过训练样本训练模糊支持向量机,构建光纤通信网络攻击辨识数学模型。结果表明,应用该模型后,不同类别的类内密度更高,均达到0.8以上,说明模型更容易将样本正确分类,从而减少了类内误分类的可能性,且该模型得到的辨识结果与真实值的一致性非常高。 展开更多
关键词 模糊支持向量 光纤通信网络 攻击类 特征提取 辨识数学模型
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
5
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
机车前端薄壁吸能管仿真模型模糊参数的支持向量回归反求 被引量:1
6
作者 许平 黄启 +3 位作者 邢杰 何家兴 徐凯 许拓 《振动与冲击》 EI CSCD 北大核心 2024年第18期28-35,共8页
为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限... 为了获得影响耐撞性结构有限元计算精度的准确模型参数,提高冲击仿真的准确性,提出一种基于支持向量回归(support vector regression,SVR)模型进行参数优化反求的方法。以一种机车前端防爬结构中的预压薄壁吸能圆管为研究对象建立有限元模型,进行台车冲击试验验证仿真模型准确性。通过拉丁超立方试验设计驱动有限元模型进行少量计算获得数据集,有限元模型中的模糊参数为输入变量,计算与试验载荷的差异为目标响应,通过SVR方法构建映射关系,并采用增强精英保留遗传算法(strengthen elitist genetic algorithm,SEGA)对超参数进行优化,确定SVR模型最佳配置;通过该最优SVR模型再次使用SEGA优化反求,获得最佳模糊参数组合。使用这组参数组合设置有限元模型,其仿真结果相较初始计算耐撞性指标和载荷曲线匹配程度都得到了提高。研究结果为有限元模型中模糊参数的准确设定、碰撞仿真的精度提升提供了一种新的思路。 展开更多
关键词 耐撞性 薄壁圆管 有限元模型 模糊参数反求 支持向量回归(SVR) 遗传算法
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
7
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小二乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于逻辑回归和支持向量机耦合模型的滑坡易发性分析 被引量:13
8
作者 李成林 刘严松 +3 位作者 赖思翰 王地 何星慧 刘琦 《自然灾害学报》 CSCD 北大核心 2024年第2期75-86,共12页
滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机... 滑坡灾害的发生具有累进性,进行滑坡易发性评价是防灾减灾的前提。以四川省旺苍县为例,使用频率比法判断12个滑坡影响因子的各分级区间滑坡敏感性,经波段集统计确定11个滑坡影响因子作为滑坡易发性评价因子,通过建立逻辑回归-支持向量机(logistic regression-support vector machine,LR-SVM)耦合模型,搭建滑坡易发性评价体系,完成旺苍县滑坡易发性评价并进行模型精度比较。研究结果表明:逻辑回归-支持向量机耦合模型的评价指标结果均优于逻辑回归模型,易发性分区结果更合理,预测精度更高;在低易发区选取非滑坡点为提高滑坡易发性评价性能作用明显;研究区内道路、高程和NDVI对滑坡发育的敏感性较强;高易发区主要分布于低海拔的水系和道路两侧。 展开更多
关键词 滑坡易发性评价 逻辑回归 支持向量 耦合模型 旺苍县
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
9
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
融合可掘性指标与支持向量回归的地铁盾构机姿态预测方法
10
作者 张振 梁杰 +2 位作者 张玉龙 陈铁 刘刚 《城市轨道交通研究》 北大核心 2025年第6期112-116,共5页
[目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型... [目的]地铁盾构机姿态偏差控制不当会对成型隧道的服役状态造成不利影响,预知施工过程中盾构机的姿态是及时调整其姿态的前提,而现有预测模型多存在可解释性差、数据量要求较高等问题。需研究新的盾构机姿态预测方法。[方法]为增加模型的可解释性,引入了表征盾构机在所处地层掘进状态的可掘性指标SE(掘进比能),作为模型的特征参数,并利用在小样本学习方面具有优势的支持向量回归方法建立盾构机姿态预测模型。利用K折交叉验证进行超参数调优,评估预测模型的性能和泛化能力。[结果及结论]将融合模型应用于重庆轨道交通27号线工程实例中,表征盾构机姿态的4项参数的预测结果的拟合优度R 2分别为0.94、0.94、0.90、0.87。融合可掘性指标后,支持向量回归模型的平均预测精度提高了11.96%;相较于反向传播神经网络模型,融合模型预测精度提升了6.41%。支持向量回归模型通过引入具有物理意义的特征参数,能够更准确地预测盾构机姿态,可为施工过程中实时调整盾构机姿态提供有效支撑。 展开更多
关键词 地铁 盾构姿态 掘进比能 支持向量回归
在线阅读 下载PDF
基于变量敏感度筛选的回归型支持向量机的数控机床热误差预测 被引量:2
11
作者 李铁军 崔尚仪 张义民 《机械设计与制造》 北大核心 2024年第9期41-43,50,共4页
随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低... 随着机械制造行业的迅猛发展,对于数控机床的定位精度要求越来越高。为了提高机床定位精度,建立了基于变量敏感度筛选与回归型支持向量机(SVR)混合模型,并将其用于数控机床热误差预测方法。该方法基于对变量敏感度分析,筛选掉敏感度低的干扰自变量。本方法与基本SVR模型对数控机床热误差预测值进行对比,结果表明基本SVR受到敏感度低的干扰自变量影响,预测结果与实测热误差结果偏差较大;经过变量敏感度筛选之后的SVR混合模型预测值具有更高的准确度,验证了此模型的可行性。 展开更多
关键词 数控 回归支持向量 变量敏感度筛选 热误差
在线阅读 下载PDF
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测 被引量:1
12
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归
在线阅读 下载PDF
基于随机森林和支持向量机的Mo-Nb合金本构模型 被引量:2
13
作者 黄文杰 王克鲁 +5 位作者 鲁世强 钟明君 李鑫 曾权 周潼 汪增强 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第2期453-461,共9页
在变形温度为900~1200℃、应变速率为0.01~10 s^(-1)条件下,采用Gleeble-3800型热模拟试验机对Mo-Nb合金进行等温恒应变速率压缩实验,研究Mo-Nb合金的流动应力行为,并采用随机森林和支持向量机的方法建立该合金的本构关系模型。结果表明... 在变形温度为900~1200℃、应变速率为0.01~10 s^(-1)条件下,采用Gleeble-3800型热模拟试验机对Mo-Nb合金进行等温恒应变速率压缩实验,研究Mo-Nb合金的流动应力行为,并采用随机森林和支持向量机的方法建立该合金的本构关系模型。结果表明:Mo-Nb合金是负温度和正应变速率敏感型材料,其流动应力随变形温度升高和应变速率降低而减小;随机森林和支持向量机本构关系模型的训练样本的相关系数和平均相对误差分别为0.989、0.998及2.41%、0.94%,测试样本的相关系数和平均相对误差分别为0.991、0.996及2.47%、1.4%,二者都具有较好的预测能力;支持向量机本构关系模型精度高于随机森林,因此,支持向量机本构关系模型更适于预测Mo-Nb合金的流动应力。 展开更多
关键词 Mo-Nb合金 本构模型 森林 支持向量
在线阅读 下载PDF
中国冬季降水的支持向量机预测模型研究 被引量:1
14
作者 姚晨伟 杨子寒 +3 位作者 白慧敏 吴银忠 龚志强 封国林 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期3670-3685,共16页
我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学... 我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学习方法提高中国冬季降水的预测准确率.基于NCEP_CFS,ECMWF_SYSTEM,BCC_CSM等五个模式数据以及站点数据,建立针对冬季降水的SVM集成预测模型,并与单个模式和等权集合平均模型(AVE)加以对比.SVM模型因其强泛化和处理非线性问题的能力,在中国冬季降水预测中表现良好.研究表明:(1)SVM模型较单个模式及AVE模型的预测准确性与稳定性得到大幅提升,SVM模型的PS评分和PCS评分显著高于单个成员模式的结果,最大分别提高了8.0(12.6%)和3.9(7.4%),较AVE模型则最大分别提高了5.4(8.2%)和2.1(3.8%),预报技巧的提高在观测资料相对缺乏的西南和西北地区尤为明显.(2)从均方根误差和时间相关系数的空间分布上来看,SVM模型对其成员模式在西藏地区、西南地区、华东及华南地区误差较大的情况改善明显,误差最大降低了259(90.9%),预报技巧最大提高了1.13.(3)独立样本检验中,SVM模型的PS评分和PCS评分显著高于单个模式和AVE模型,最大提高了10.79(20.3%)和11.39(27.3%).因此,SVM模型的构建,将有助于进一步提高中国冬季降水预测的准确性和稳定性,为气象防灾减灾和气候资源开发利用等提供重要技术支撑. 展开更多
关键词 降水 支持向量 等权集合平均模型 集成预测
在线阅读 下载PDF
基于支持向量机的输电线路覆冰回归模型 被引量:45
15
作者 戴栋 黄筱婷 +3 位作者 代洲 郝艳捧 李立浧 傅闯 《高电压技术》 EI CAS CSCD 北大核心 2013年第11期2822-2828,共7页
为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针... 为对输电线路覆冰进行有效地监测、预测及预警,提出了一种基于支持向量机(support vector machine,SVM)的输电线路覆冰回归模型,用于输电线路覆冰情况的短期预测。这一研究工作是在MATLAB环境下,应用LIBSVM软件包编程进行建模仿真的;针对实测微气象-覆冰数据多维、自由度大的特性,选定与覆冰相关性最大的气温、相对空气湿度数据以及覆冰参考量作为输入量,覆冰质量作为输出量;提出了基于支持向量机的超短期预测、短期迟滞预测和滚动预测3种预测模型,并通过实例数据仿真评估了模型的有效性。结果表明:超短期预测模型预测精度>90%,但时效仅15min、实用价值较低;短期迟滞预测模型和滚动预测模型在2h内预测精度均>80%,可适用于输电线路覆冰的短期实时预测;滚动预测模型理论上可预测更长期的覆冰情况,假设微气象参量恒定不变限制了其预测精度,若结合微气象预报将会有更好的预测效果。由于目前适用于建模仿真的完整覆冰数据较少,因此支持向量机用于建立输电线路覆冰回归模型的有效性和稳定性还有待进一步验证。 展开更多
关键词 覆冰 输电线路 支持向量 回归模型 短期预测 在线监测
在线阅读 下载PDF
基于蚁群优化最小二乘支持向量回归机的河蟹养殖溶解氧预测模型 被引量:41
16
作者 刘双印 徐龙琴 +1 位作者 李道亮 曾利华 《农业工程学报》 EI CAS CSCD 北大核心 2012年第23期167-175,共9页
养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用... 养殖池塘溶解氧是河蟹赖以生存的重要指标,及时准确地掌握溶解氧浓度变化趋势是确保高密度河蟹健康养殖的关键。为提高溶解氧预测精度和效率,该文提出了蚁群算法(ACA)优化最小二乘支持向量回归机(LSSVR)的河蟹养殖溶解氧预测方法。采用蚁群算法对最小二乘支持向量回归机的模型参数进行优化,并以自动获取的最佳参数组合构建溶解氧与其影响因子间非线性预测模型。利用该模型对江苏宜兴市2010年7月20日~7月28日期间高密度养殖池塘溶解氧进行预测。研究表明,该预测模型取得较好的预测效果,与支持向量回归机和BP神经网络相比,模型评价指标均方根误差、相对均方误差均值、平均绝对误差和和决定系数和运行时间分别为0.0328、0.0016、0.0448、0.9916和3.3275s均优于其他预测方法,ACA-LSSVR模型不仅计算复杂度低、收敛速度快、预测精度高、泛化能力强,还能满足实际高密度河蟹养殖溶解氧管理的需要,为其他领域的水质预测提供参考。 展开更多
关键词 模型 优化 算法 溶解氧预测 最小二乘支持向量回归 河蟹养殖
在线阅读 下载PDF
基于时变自回归模型与支持向量机的旋转机械故障诊断方法 被引量:23
17
作者 张龙 熊国良 +2 位作者 柳和生 邹慧君 陈慧 《中国电机工程学报》 EI CSCD 北大核心 2007年第9期99-103,共5页
旋转机械如电机振动信号普遍存在非平稳性,同时对于某台设备已有的故障样本往往非常有限的。针对这些问题,提出一种基于时变参数自回归模型和支持向量机相结合的旋转机械故障诊断方法。首先通过对振动信号建立TVAR模型,提取模型系数及... 旋转机械如电机振动信号普遍存在非平稳性,同时对于某台设备已有的故障样本往往非常有限的。针对这些问题,提出一种基于时变参数自回归模型和支持向量机相结合的旋转机械故障诊断方法。首先通过对振动信号建立TVAR模型,提取模型系数及残差的方差作为信号特征,然后利用SVM对信号进行分类,继而实现故障自动识别。转子实验台实验结果表明该文方法能够有效提取非平稳信号的特征,并能在较少训练样本的情况下获得较好的诊断结果。 展开更多
关键词 旋转 时变自回归模型 支持向量 非平稳信号 故障诊断
在线阅读 下载PDF
逻辑回归与支持向量机模型在滑坡敏感性评价中的应用 被引量:33
18
作者 谭龙 陈冠 +1 位作者 王思源 孟兴民 《工程地质学报》 CSCD 北大核心 2014年第1期56-63,共8页
白龙江流域是我国滑坡泥石流灾害四大高发区之一,进行该区域滑坡敏感性评价,能够为决策者在灾害管理和设施建设规划方面提供帮助,对区域防灾减灾具有重要指导意义。本研究采用边坡单元为基本研究单元,在野外调查及前人研究基础上,选择... 白龙江流域是我国滑坡泥石流灾害四大高发区之一,进行该区域滑坡敏感性评价,能够为决策者在灾害管理和设施建设规划方面提供帮助,对区域防灾减灾具有重要指导意义。本研究采用边坡单元为基本研究单元,在野外调查及前人研究基础上,选择控制该区域滑坡发育的19个要素作为影响因子;经过主成分分析和独立性检验得到该区域对滑坡形成贡献最大的6个因子:高程、坡度、坡向、岩性、断裂距离和人口密度;分别使用二元逻辑回归模型(LR)和支持向量机模型(SVM)对该区域进行滑坡敏感性评价;最后,采用ROC曲线对模型精度进行验证。研究结果表明,两模型各能将38.76%、14.48%、9.40%、11.28%、26.07%和13.49%、21.61%、8.17%、26.70%、30.04%的边坡单元分别预测为极高危险区、高危险区、中度危险区、低危险区和极低危险区;精度验证结果表明两种模型均能有效地进行该区域滑坡敏感性评价,并且支持向量机模型具有更好的分类能力、预测精度和稳定性。 展开更多
关键词 白龙江流域 逻辑回归 支持向量 敏感性制图 滑坡
在线阅读 下载PDF
基于支持向量回归机的区域物流需求预测模型及其应用 被引量:14
19
作者 黄虎 蒋葛夫 +2 位作者 严余松 廖百胜 夏国恩 《计算机应用研究》 CSCD 北大核心 2008年第9期2738-2740,共3页
为了提高区域物流需求预测的能力,从区域经济等影响因素指标与区域物流需求之间的内在关系的角度,应用基于结构风险最小化准则的支持向量回归机(SVR)方法,建立"影响因素—区域物流需求"SVR预测模型来研究预测区域物流需求问... 为了提高区域物流需求预测的能力,从区域经济等影响因素指标与区域物流需求之间的内在关系的角度,应用基于结构风险最小化准则的支持向量回归机(SVR)方法,建立"影响因素—区域物流需求"SVR预测模型来研究预测区域物流需求问题。在选择适当的参数和核函数的基础上,对上海市物流需求量进行预测,发现该方法能获得较小的训练相对误差和测试相对误差。 展开更多
关键词 区域物流需求 支持向量回归 预测
在线阅读 下载PDF
基于支持向量机回归的短时交通流预测模型 被引量:92
20
作者 傅贵 韩国强 +1 位作者 逯峰 许子鑫 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第9期71-76,共6页
将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市... 将交通流预测的理论和方法引入交通控制系统,可提高交通控制系统对交通流变化的自适应能力.为此,文中通过引入核函数把短时交通流预测问题转化为高维空间中的线性回归问题,提出了基于支持向量机回归的短时交通流预测模型,并利用广州市交通流检测系统的数据进行实验.结果表明,文中模型的预测结果与实际数据相吻合,预测误差小于基于卡尔曼滤波的预测方法,从而验证了该模型的可行性和有效性. 展开更多
关键词 交通控制 短时交通流 预测模型 器学习 支持向量回归
在线阅读 下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部