利用无监督学习的一类支持向量机(One Class Support Vector Machine,OCSVM)和随机场景图像序列,构造滚动更新的像元分类模型,实现红外焦平面盲元的在线检测。根据正常像元和异常像元数量和灰度特征的差异,以随机图像序列作为输入数据,...利用无监督学习的一类支持向量机(One Class Support Vector Machine,OCSVM)和随机场景图像序列,构造滚动更新的像元分类模型,实现红外焦平面盲元的在线检测。根据正常像元和异常像元数量和灰度特征的差异,以随机图像序列作为输入数据,使用OCSVM建立单一类别的像元分类模型,灰度变化的像元归为一类,其他像元不属于此类。由于随机图像序列的滚动更新,OCSVM模型及支持向量也随之更新。统计支持向量的频次,高频次支持向量对应的像元聚为一类,即为异常像元。以320×256中波红外图像序列为例,说明了OCSVM模型进行盲元检测的过程,检测结果与黑体定标的结果一致。基于随机场景和OCSVM模型的盲元检测方法摆脱了定标黑体的约束,提高了盲元检测的灵活性。展开更多
为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量...为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。展开更多
文摘利用无监督学习的一类支持向量机(One Class Support Vector Machine,OCSVM)和随机场景图像序列,构造滚动更新的像元分类模型,实现红外焦平面盲元的在线检测。根据正常像元和异常像元数量和灰度特征的差异,以随机图像序列作为输入数据,使用OCSVM建立单一类别的像元分类模型,灰度变化的像元归为一类,其他像元不属于此类。由于随机图像序列的滚动更新,OCSVM模型及支持向量也随之更新。统计支持向量的频次,高频次支持向量对应的像元聚为一类,即为异常像元。以320×256中波红外图像序列为例,说明了OCSVM模型进行盲元检测的过程,检测结果与黑体定标的结果一致。基于随机场景和OCSVM模型的盲元检测方法摆脱了定标黑体的约束,提高了盲元检测的灵活性。
文摘为提高网络入侵检测系统中检测算法的分类精度,降低训练样本及学习时间,在基于支持向量回归机的基础上,提出一种新的利用Lagrange支持向量回归机设计IDS的检测算法。使用KDD CUP 1999数据集进行仿真实验,结果表明该算法较基于支持向量回归机的检测算法具有更良好的泛化性能、更快的迭代速度、更高的检测精度和更低的误报率。