期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于改进回声状态网络的质子交换膜燃料电池剩余寿命预测
1
作者 袁铁江 李荣盛 +1 位作者 康建东 闫华光 《中国电力》 北大核心 2025年第5期102-109,共8页
针对质子交换膜燃料电池(PEMFC)的剩余有效寿命预测技术(RUL)在中长期预测效果不佳的问题,提出了一种基于改进灰狼优化算法(IGWO)和回声状态网络(ESN)的剩余寿命预测方法。首先选取电堆电压作为健康指标,使用卷积平滑滤波法对PEMFC数据... 针对质子交换膜燃料电池(PEMFC)的剩余有效寿命预测技术(RUL)在中长期预测效果不佳的问题,提出了一种基于改进灰狼优化算法(IGWO)和回声状态网络(ESN)的剩余寿命预测方法。首先选取电堆电压作为健康指标,使用卷积平滑滤波法对PEMFC数据集进行数据平滑和归一化处理,有效减少异常值对后续模型训练的干扰。然后利用IGWO的局部和全局寻优能力对ESN的储备池参数进行优化,构建出IGWO-ESN网络模型,并利用处理后数据集进行PEMFC剩余寿命预测模型的训练,最后与传统的ESN进行对比验证。结果表明,改进后的ESN模型预测均方根误差和平均绝对百分比误差分别为0.0342和0.9315%,预测精度相较于普通ESN模型明显提升,中长期RUL的预测准确度也更高。 展开更多
关键词 质子交换膜燃料电池 回声状态网络 灰狼优化算法 剩余寿命预测
在线阅读 下载PDF
基于变分模态分解与鲸鱼算法优化回声状态网络的风速预测模型 被引量:2
2
作者 唐非 李昊 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1770-1777,共8页
风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态... 风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态分解算法将风速序列分解成多个分量以减少风速内部信号间的耦合性,降低建模难度。然后对这些分量分别建立对应的回声状态网络预测模型。针对回声状态网络模型性能受储备池参数影响较大的问题,采用鲸鱼优化算法对储备池参数进行优化。风速的最终预测值由分解后各分量预测值相加得到。最后,将实际采集的短期风速数据作为研究对象,通过与其他4种预测模型的对比分析表明提出的风速预测模型具有更高的预测精度,能够更好地对风速的变化趋势进行预测。 展开更多
关键词 风速 预测 变分模态分解 回声状态网络 鲸鱼优化算法
在线阅读 下载PDF
偏置剪枝叠式自编码回声状态网络的时序预测
3
作者 刘丽丽 刘玉玺 王河山 《计算机工程与设计》 北大核心 2024年第1期212-219,共8页
针对大多数模型对时间序列预测数据的预测准确率较低,为提升时间序列的预测精度,提出一种基于Biased Drop-weight的偏置剪枝叠式自编码回声状态网络(BD-AE-SGESN)的深度模型。以叠式ESN为多层深度网络框架,提出一种生成式AE算法生成每... 针对大多数模型对时间序列预测数据的预测准确率较低,为提升时间序列的预测精度,提出一种基于Biased Drop-weight的偏置剪枝叠式自编码回声状态网络(BD-AE-SGESN)的深度模型。以叠式ESN为多层深度网络框架,提出一种生成式AE算法生成每一层的输入权值,利用BD算法根据输入权重激活值进行剪枝。对比实验结果表明,该模型能够有效提升预测准确率,在3个不同的数据上,相比其它模型有着较小的预测误差和较高的稳定度。 展开更多
关键词 多变量时间序列 回声状态网络 预测模型 剪枝 自编码 深度网络 权重优化
在线阅读 下载PDF
基于蚁群算法优化回声状态网络的研究 被引量:11
4
作者 宋绍剑 王尧 林小峰 《计算机工程与科学》 CSCD 北大核心 2017年第12期2326-2332,共7页
针对输出权值采用最小二乘法的回声状态网络(ESN),在随机选取输入权值和隐层神经元阈值时,存在收敛速度慢、预测精度不稳定等问题,提出了基于蚁群算法优化回声状态网络(ACO-ESN)的算法。该算法将优化回声状态网络的初始输入权值、隐层... 针对输出权值采用最小二乘法的回声状态网络(ESN),在随机选取输入权值和隐层神经元阈值时,存在收敛速度慢、预测精度不稳定等问题,提出了基于蚁群算法优化回声状态网络(ACO-ESN)的算法。该算法将优化回声状态网络的初始输入权值、隐层神经元阈值问题转化为蚁群算法中蚂蚁寻找最佳路径的问题,输出权值采用最小二乘法计算,通过蚁群算法的更新、变异、遗传等操作训练回声状态网络,选择出使回声状态网络预测误差最小的输入权值和阈值,从而提高其预测性能。将ACO-ESN与ELM、I-ELM、OS-ELM、B-ELM等神经网络的仿真结果进行对比,结果验证经过蚁群算法优化的回声状态网络加快了其收敛速度,改善了其预测性能,并增强了隐层神经元的敏感度。 展开更多
关键词 回声状态网络 蚁群 优化 权值 阈值
在线阅读 下载PDF
基于优化回声状态网络的微电网等效建模 被引量:8
5
作者 吴忠强 戚松岐 +1 位作者 尚梦瑶 申丹丹 《计量学报》 CSCD 北大核心 2021年第7期923-929,共7页
为了使微电网建模更加精确,提出了一种基于优化回声状态网络(echo state network,ESN)的微电网等效建模方法。以微电网各种运行状态下并网接入端的电流和功率等数据分别作为网络的输入和输出,构建基于回声状态网络的微电网等效模型。由... 为了使微电网建模更加精确,提出了一种基于优化回声状态网络(echo state network,ESN)的微电网等效建模方法。以微电网各种运行状态下并网接入端的电流和功率等数据分别作为网络的输入和输出,构建基于回声状态网络的微电网等效模型。由于回声状态网络初始化参数选取后就不再改变,缺乏自适应性,往往导致逼近能力不能达到最优;而烟花算法具有爆发性、瞬时性、分布并行性和可扩充性等优点;为了提高建模的精确性,故利用烟花算法对回声状态网络进行参数优化。通过模拟烟花的爆炸来建立数学模型,计算个体适应度值选择最优个体。建模结果与微电网并网仿真的实测数据对比,验证了该建模方法的合理型和准确性,说明所建模型具有较好的实际应用价值。 展开更多
关键词 计量学 微电网 回声状态网络 等效建模 并网 烟花算法 参数优化
在线阅读 下载PDF
基于回声状态网络的结合面特性参数建模 被引量:1
6
作者 杨红平 赵宇 +1 位作者 赵荣珍 李维谦 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第4期772-778,共7页
机械结构中存在大量结合面,在机床静态变形中,由各结合面引起的变形量高达85%,各种结合面的接触刚度约占机床总刚度的60~80%。本文针对机械结合面接触特性参数,提出基于ESN回声状态网络理论对机械结合面法向接触刚度进行仿生学... 机械结构中存在大量结合面,在机床静态变形中,由各结合面引起的变形量高达85%,各种结合面的接触刚度约占机床总刚度的60~80%。本文针对机械结合面接触特性参数,提出基于ESN回声状态网络理论对机械结合面法向接触刚度进行仿生学建模。以4种组合条件下的结合面接触刚度为算例,采用算法学习训练域和预测域相分离的方法,在对影响法向接触刚度的主要因素的定量化处理的基础上,进行ESN算法建模和计算结果误差分析,结果表明,该算法的预测精度可达0.0016%以上。同时,在同等条件下,通过该算法与BP神经网络、RBP神经网络、MPSO—BP网络算法预测能力比较分析,结果表明,回声状态网络计算精度最高,并将该建模计算结果进行工程应用。 展开更多
关键词 回声状态网络 结合面 特性参数 建模
在线阅读 下载PDF
改进粒子群算法优化回声状态网络的电力需求预测研究 被引量:21
7
作者 王林 王燕丽 安泽远 《计算机工程与科学》 CSCD 北大核心 2022年第8期1457-1466,共10页
首先引入自适应算子对标准粒子群优化算法PSO的惯性权重和学习因子进行改进,以提高其探索当前空间和开发未知空间之间的平衡性。同时,采用非线性函数来构建回声状态网络ESN储备池内部状态之间的非线性关系。接着利用改进的粒子群优化算... 首先引入自适应算子对标准粒子群优化算法PSO的惯性权重和学习因子进行改进,以提高其探索当前空间和开发未知空间之间的平衡性。同时,采用非线性函数来构建回声状态网络ESN储备池内部状态之间的非线性关系。接着利用改进的粒子群优化算法APSO对非线性回声状态网络NESN的关键参数进行优化,以构建APSO-NESN组合预测模型。最后运用该模型进行电力需求预测。实验结果表明,相比自回归移动平均模型、多元线性回归、标准ESN及其他预测模型,APSO-NESN模型具有更高的预测精度。 展开更多
关键词 电力需求预测 回声状态神经网络 粒子群优化算法
在线阅读 下载PDF
基于互信息和Just-in-Time优化的回声状态网络 被引量:7
8
作者 张衡 王河山 《郑州大学学报(工学版)》 CAS 北大核心 2017年第5期1-6,共6页
为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输... 为了提高回声状态网络(ESN)的适应性,提出基于互信息(MI)和Just-in-Time(JIT)的优化方法,对ESN的输入伸缩参数以及输出层进行优化,所得网络称为MI-JIT-ESN.ESN的优化方法分为两部分:一是基于网络输入与输出之间的互信息,对网络的多个输入伸缩参数进行调整;二是基于JIT优化的局部输出层,对ESN的隐层输出数据进行局部重新建模,从而提升ESN输出层的回归拟合精度.将MI-JIT-ESN应用于青霉素补料分批发酵过程建模.结果显示,MI-JIT优化方法能提高模型的适应性,并优于其他比较方法. 展开更多
关键词 回声状态网络 互信息 JUST-IN-TIME 优化 建模 青霉素发酵
在线阅读 下载PDF
基于回声状态网络优化的宽间隔混沌跳频码预测
9
作者 陈建华 马玉芳 《科学技术与工程》 北大核心 2018年第24期255-260,共6页
传统宽间隔混沌跳频码预测方法无反馈结构,记忆能力差;且训练过程烦琐,泛化性能差,对预测精度产生不好的影响。为此,提出一种新的基于回声状态网络优化的宽间隔混沌跳频码预测方法。设计回声状态网络,其由输入层、递归层以及输出层三个... 传统宽间隔混沌跳频码预测方法无反馈结构,记忆能力差;且训练过程烦琐,泛化性能差,对预测精度产生不好的影响。为此,提出一种新的基于回声状态网络优化的宽间隔混沌跳频码预测方法。设计回声状态网络,其由输入层、递归层以及输出层三个部分构成。在递归层内部各神经元间引入连接权值稀疏矩阵,使递归层内部存在动态记忆。回声状态网络储备池规模、储备池内部连接权谱半径、储备池稀疏度、储备池输入单元尺度对宽间隔混沌跳频码预测准确性产生不同的影响。通过和声搜索方法对四种储备池参数进行优化,实现回声状态网络的改进。确定优化回声状态网络输入输出数据,建立优化回声状态网络。确定储备池参数,通过训练数据激活储备池,计算回声状态网络输出连接权矩阵,对宽间隔混沌跳频码进行预测。实验结果表明,所提方法预测结果可靠,和其他方法相比有很高的预测精度。 展开更多
关键词 回声状态网络优化 宽间隔 混沌 跳频码 预测
在线阅读 下载PDF
基于优化回声状态网络的股价预测研究 被引量:6
10
作者 张宁致 周佳丽 孙武军 《管理工程学报》 CSSCI 北大核心 2014年第1期94-101,共8页
股票市场是一个充斥着各种噪声的动态非线性系统,能够精确地对其进行预测是一项具有挑战性的任务。本文构建的BCC-ESN模型,是运用细菌群体趋药性算法(BCC)来优化回声状态网络(ESN)的权值结构,在继承ESN优良性质的同时,具有更高的模型预... 股票市场是一个充斥着各种噪声的动态非线性系统,能够精确地对其进行预测是一项具有挑战性的任务。本文构建的BCC-ESN模型,是运用细菌群体趋药性算法(BCC)来优化回声状态网络(ESN)的权值结构,在继承ESN优良性质的同时,具有更高的模型预测能力。实验证明,BCC-ESN模型比前馈神经网络具有更好的学习和预测能力。经对上证指数进行短期价格预测,结果与BP网络、Elman网络和ESN网络进行比较,BCC-ESN模型精度明显优于其他三种网络预测。同时,在运算效率上,BCC-ESN模型继承了ESN的运算优势,明显优于其他神经网络预测模型,是一种切实可行、高效的预测算法,尤其在股票时间序列预测中有广泛的实用价值。针对BCC-ESN模型在训练预测中遇到的问题,比如耗费时间过长和过度拟合问题,本文亦提供了简单易行的思路和方法。 展开更多
关键词 回声状态网络 细菌群体趋药性算法 股票价格预测 算法优化
在线阅读 下载PDF
基于去趋势多重互相关的深度回声状态网络剪枝算法
11
作者 孙晓川 王宇 +1 位作者 李莹琦 黄天宇 《郑州大学学报(工学版)》 CAS 北大核心 2024年第4期38-45,共8页
针对储备池中存在的冗余结构导致深度回声状态网络预测精度不佳的问题,提出了一种基于去趋势多重互相关的深度回声状态网络剪枝算法。首先,根据去趋势协方差函数和去趋势方差函数,依次计算所选储备池中每2个神经元之间的去趋势互相关系... 针对储备池中存在的冗余结构导致深度回声状态网络预测精度不佳的问题,提出了一种基于去趋势多重互相关的深度回声状态网络剪枝算法。首先,根据去趋势协方差函数和去趋势方差函数,依次计算所选储备池中每2个神经元之间的去趋势互相关系数,构建去趋势互相关矩阵,基于该矩阵评估该储备池中所选神经元与所有剩余神经元之间的去趋势多重互相关性。其次,依次删除每个储备池中高相关性神经元到输出层的连接,从而去除网络中的冗余结构。最后,通过最小二乘回归重新训练剪枝后的网络,以获得最优的深度回声状态网络拓扑结构。仿真结果表明:经过所提算法优化后的深度回声状态网络在Mackey-Glass时间序列上的预测精度和记忆能力分别提高了89.80%和30.93%,在Call时间序列上的预测精度和记忆能力分别提高了14.34%和0.10%。 展开更多
关键词 深度回声状态网络 结构优化 剪枝 去趋势多重互相关 时间序列预测
在线阅读 下载PDF
改进果蝇算法优化回声状态网络的旅游需求预测研究 被引量:11
12
作者 陈明扬 王林 余晓晓 《计算机工程与科学》 CSCD 北大核心 2020年第2期307-316,共10页
首先对标准果蝇优化算法FOA进行改进,自适应调整果蝇种群数量和搜索步长,同时优化初始迭代位置,改善算法局部搜索能力和搜索效率。接着将改进的FOA算法AFOA与回声状态网络ESN相结合,构建一个两阶段组合预测模型(AFOA-ESN),通过AFOA优化... 首先对标准果蝇优化算法FOA进行改进,自适应调整果蝇种群数量和搜索步长,同时优化初始迭代位置,改善算法局部搜索能力和搜索效率。接着将改进的FOA算法AFOA与回声状态网络ESN相结合,构建一个两阶段组合预测模型(AFOA-ESN),通过AFOA优化ESN获取其关键参数,将优化后的参数输入ESN,形成最终的组合预测模型。最后利用该模型进行旅游需求预测。实验结果表明,AFOA-ESN模型较自回归移动平均模型、支持向量机模型、BP神经网络、标准ESN网络以及其他预测模型具有更高的预测精度。 展开更多
关键词 旅游需求预测 回声状态神经网络 果蝇优化算法
在线阅读 下载PDF
基于改进回声状态网络的网络热点话题预测 被引量:1
13
作者 刘羿 张永强 《计算机应用与软件》 CSCD 2015年第11期251-254,288,共5页
网络热点话题具有时变性和非线性,灰色、负面热点话题对社会稳定产生不利影响。为了提高网络热点话题的预测精度,提出一种基于改进回声状态网络的热点话题预测模型(MESN)。首先构建网络热点话题的学习样本,然后采用回声状态网络建立网... 网络热点话题具有时变性和非线性,灰色、负面热点话题对社会稳定产生不利影响。为了提高网络热点话题的预测精度,提出一种基于改进回声状态网络的热点话题预测模型(MESN)。首先构建网络热点话题的学习样本,然后采用回声状态网络建立网络热点话题预测模型,并利用改进粒子群优化算法对回声状态网络参数进行优化,建立最优网络热点话题预测模型,最后应用具体网络热点话题数据进行仿真实验。结果表明,该模型不仅提高了网络热点话题预测精度,而且加快了网络热点话题的建模速度,可以满足网络热点话题在线预测。 展开更多
关键词 网络热点话题预测 回声状态网络参数优化 粒子群算法
在线阅读 下载PDF
基于随机拓扑优化提升回声状态网络的交通流预测 被引量:2
14
作者 凌光 肖博元 +2 位作者 孙佳旭 张立峰 宋响响 《控制工程》 CSCD 北大核心 2023年第12期2179-2184,共6页
交通流预测是交通智慧化的重要任务。为了提高短时交通流的预测精度,解决单一模型预测精度不足、易受噪声干扰等特点,提出了一种基于随机拓扑优化的提升回声状态网络(echo state networks, ESN)的预测方法。该方法以简单的回声状态网络... 交通流预测是交通智慧化的重要任务。为了提高短时交通流的预测精度,解决单一模型预测精度不足、易受噪声干扰等特点,提出了一种基于随机拓扑优化的提升回声状态网络(echo state networks, ESN)的预测方法。该方法以简单的回声状态网络为基本构成单元,利用随机拓扑优化策略对回声状态网络的拓扑结构进行优化选择,然后利用基于误差补偿的提升算法提高整体模型的预测精度。通过对随机拓扑优化策略和提升算法在实际交通流预测问题中的性能分析,验证了所提方法的可行性和有效性,同时可为其他弱预测学习器的学习性能改进提供参考。 展开更多
关键词 回声状态网络 交通流预测 提升策略 随机拓扑优化
在线阅读 下载PDF
基于改进回声状态网络的高炉煤气产耗预测 被引量:10
15
作者 刘颖 时飞飞 +3 位作者 赵珺 王伟 丛力群 冯为民 《系统仿真学报》 CAS CSCD 北大核心 2011年第10期2184-2189,共6页
以钢铁企业高炉煤气系统为背景,针对其产生量和消耗量的预测问题,提出一种改进回声状态网络时间序列方法进行系统仿真预测,并根据最小均方差准则,以最小化网络训练误差为目标,采用随机梯度下降法对网络参数进行优化。该方法对于不同预... 以钢铁企业高炉煤气系统为背景,针对其产生量和消耗量的预测问题,提出一种改进回声状态网络时间序列方法进行系统仿真预测,并根据最小均方差准则,以最小化网络训练误差为目标,采用随机梯度下降法对网络参数进行优化。该方法对于不同预测对象,可计算出合适的网络连接权值、储备池谱半径等参数,避免了传统回声状态网络方法中单凭经验选择网络参数的现状,提高了预测精度。采用该方法对高炉煤气系统现场实际产耗数据进行了仿真预测,仿真结果表明所提出方法的有效性。 展开更多
关键词 高炉煤气系统仿真预测 回声状态网络 梯度下降法 参数优化
在线阅读 下载PDF
回声状态网络在变风量空调内模控制中的应用 被引量:2
16
作者 王华秋 王斌 龙建武 《重庆理工大学学报(自然科学)》 CAS 2017年第6期120-126,153,共8页
回声状态网络储备池完全随机生成,数据预测时其参数的设置缺乏合理性,因此将果蝇优化算法应用于回声状态网络储备池参数的优化中,通过果蝇优化算法的自适应参数寻优提高回声状态网络的数据预测能力。变风量空调系统是一个多变量、强耦... 回声状态网络储备池完全随机生成,数据预测时其参数的设置缺乏合理性,因此将果蝇优化算法应用于回声状态网络储备池参数的优化中,通过果蝇优化算法的自适应参数寻优提高回声状态网络的数据预测能力。变风量空调系统是一个多变量、强耦合和非线性的系统,为了实现变风量空调系统的智能控制,从而优化生产工艺,构建了基于果蝇优化的回声状态网络内模控制系统的正模型和逆模型。仿真实验结果表明:所提出的内模控制系统具有良好的跟踪性和抗干扰性。 展开更多
关键词 回声状态网络 储备池 果蝇优化算法 内模控制 变风量空调系统
在线阅读 下载PDF
基于贝叶斯优化ESN的PEMFC性能退化预测
17
作者 陈进 靳佳澍 +2 位作者 陈跃鹏 谢长君 刘柏均 《中国电机工程学报》 北大核心 2025年第16期6437-6448,I0024,共13页
质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性... 质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)的耐久性不足是困扰其自身大规模商业化的问题之一。该文提出一种贝叶斯优化(bayesian optimization,BO)算法优化回声状态网络(echo state network,ESN)模型进行PEMFC性能退化预测。通过BO获取ESN模型的最优超参数组,利用ESN模型预测PEMFC电压。此外,电压下降是PEMFC性能退化的重要表征之一,电压下降迅速的地方包含更多的性能退化特征信息,需要进行更频繁的采样;电压下降程度较小的地方包含较少的性能退化特征信息,需要进行较低频率采样。因此,该文提出一种自适应模糊规则采样(adaptive fuzzy sampling,AFS)对数据集进行采样提升PEMFC预测精度。结果表明,在静态工况中,BO-ESN的均方根误差(root mean square error,RMSE)和平均百分比误差(mean absolutepercentage error,MAPE)分别比ESN模型降低52.4%和63.6%。经AFS采样后BO-ESN模型的RMSE和MAPE分别比固定时间间隔采样降低49.8%和54.5%。在动态工况中,BO-ESN模型相比于ESN模型的RMSE和MAPE分别降低13.4%和7.96%。该方法具有较好的PEMFC性能退化预测性能。 展开更多
关键词 贝叶斯优化 回声状态网络 自适应模糊规则采样 置信区间 性能退化
在线阅读 下载PDF
基于改进回声状态网络的游离氧化钙预测控制 被引量:2
18
作者 李德健 刘浩然 +3 位作者 刘彬 刘泽仁 王卫涛 闻岩 《化工学报》 EI CAS CSCD 北大核心 2019年第12期4749-4759,共11页
在非线性时延水泥烧成系统中,针对传统预测控制方法调节时间长、控制精度不高的问题,提出一种改进的在线型回声状态网络预测控制模型。首先将带有L1范数约束项的递归最小二乘法与回声状态网络相结合构建在线型预测模型,解决传统预测控... 在非线性时延水泥烧成系统中,针对传统预测控制方法调节时间长、控制精度不高的问题,提出一种改进的在线型回声状态网络预测控制模型。首先将带有L1范数约束项的递归最小二乘法与回声状态网络相结合构建在线型预测模型,解决传统预测控制模型辨识精度较低、无法进行实时预测的问题;然后基于改进的回声状态网络预测模型,构建预测控制模型结构,并采用具有全局优化能力的粒子群算法进行滚动优化,保证实际输出量快速、准确、平稳地跟随被控量的设定值;最后利用改进的预测控制模型对水泥烧成系统中的游离氧化钙含量进行预测控制仿真实验,结果表明改进的预测控制模型具有良好的性能和应用前景。 展开更多
关键词 模型预测控制 神经网络 回声状态网络 L1正则化 优化 烧成系统
在线阅读 下载PDF
某火炮伺服系统的回声状态网络自抗扰控制 被引量:3
19
作者 吴亮 陈机林 +2 位作者 候远龙 王攀伟 姜昭钰 《兵工自动化》 2021年第11期16-19,31,共5页
为解决火炮伺服系统面临的一系列非线性因素,设计一种基于回声状态网络的自抗扰控制(active disturbance rejection control,ADRC)策略。使用回声状态网络(echo state network,ESN)实现自抗扰控制重要参数的在线整定,并引入梯度下降算... 为解决火炮伺服系统面临的一系列非线性因素,设计一种基于回声状态网络的自抗扰控制(active disturbance rejection control,ADRC)策略。使用回声状态网络(echo state network,ESN)实现自抗扰控制重要参数的在线整定,并引入梯度下降算法与改进后的灰狼优化算法(grey wolf optimization,GWO)对回声状态网络进行训练。仿真结果表明:该新型控制方法能有效提高火炮伺服系统的动态响应性能、抗干扰性能以及随动跟踪精度,满足火炮伺服系统所要求的性能指标。 展开更多
关键词 伺服系统 自抗扰控制 回声状态网络 梯度下降算法 灰狼优化算法
在线阅读 下载PDF
基于优化概率神经网络的飞机结冰情况识别
20
作者 丁娣 钱炜祺 汪清 《空气动力学学报》 CSCD 北大核心 2022年第5期100-109,共10页
针对飞机飞行过程结冰情况识别和预警需求,利用概率神经网络开展直接基于飞行状态的飞机结冰情况识别研究。首先利用双水獭结冰研究飞机的结冰数据,建立结冰飞行动力学模型,生成飞机在干净外形、中度和重度机翼结冰以及中度和重度尾翼... 针对飞机飞行过程结冰情况识别和预警需求,利用概率神经网络开展直接基于飞行状态的飞机结冰情况识别研究。首先利用双水獭结冰研究飞机的结冰数据,建立结冰飞行动力学模型,生成飞机在干净外形、中度和重度机翼结冰以及中度和重度尾翼结冰五种情况下的大量飞行仿真数据,作为分类神经网络训练和性能评估的基础;再基于大量飞行仿真数据分析各飞行状态变量受结冰影响的显著程度,选择受结冰影响较大的6个状态变量作为识别网络的输入;提出了一种传播参数优化策略对基于概率神经网络的结冰分类精度进行优化,在此基础上对6个状态输入的结冰分类结果展开对比分析,发现基于这6个受结冰影响较大的状态变量构建的优化概率神经网络,对于训练和评估数据均具有较高的分类精度,对于训练数据分类精度均可达到100%,对于评估数据,分类精度最高的网络正确率可达99.1%,效果最差的网络分类精度也超过85%;快变量对于评估数据分类精度较高,但对泛化性评估数据的分类精度偏低,慢变量则正好相反;基于快变量攻角α和慢变量位移xe的神经网络分类效果相对较好,若不考虑风场扰动的变化,基于攻角α的分类网络的最大误报概率不超过1.4%,若综合考虑风场扰动变化的情况,则采用基于xe的分类网络效果更好,对于五种结冰情况最大误报概率整体不超过10%。最后利用两种支持向量机方法与优化概率神经网络的分类精度进行对比,进一步验证该方法的性能。 展开更多
关键词 结冰情况分类 概率神经网络 传播参数优化 飞行状态测量 结冰累积过程 风场扰动
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部