期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Co-Teaching的噪声标签深度学习
1
作者
夏强强
李菲菲
《电子科技》
2024年第11期1-6,共6页
大规模数据在人为标记时易出现标记误差,导致数据集存在噪声标签,影响深度神经网络模型的泛化。Co-teaching等现行研究方法中的样本选择机制易使噪声样本流入被选的干净标签样本子集,在训练中难以较好地控制深度神经网络模型对被选干净...
大规模数据在人为标记时易出现标记误差,导致数据集存在噪声标签,影响深度神经网络模型的泛化。Co-teaching等现行研究方法中的样本选择机制易使噪声样本流入被选的干净标签样本子集,在训练中难以较好地控制深度神经网络模型对被选干净样本子集的拟合。因此,文中提出一个基于Co-teaching改进的新算法。该方法通过增加两个正则化损失来分别避免模型过于信任某单一类别和陷入局部最优解中。此外,引入大学习率衰减训练方法使模型在训练初期更倾向学习干净标签样本特征以得到较好的模型参数。与Co-teaching结果相比,文中模型在20%和50%对称噪声以及45%非对称噪声环境下,在MNIST、CIFAR-10合成噪声数据集及Animal10N现实数据集上的性能均取得了提升。
展开更多
关键词
深度学习
卷积神经网络
图像分类
噪声标签数据
标签
噪声
学习
Co-teaching训练
学习率
鲁棒损失函数
在线阅读
下载PDF
职称材料
题名
基于Co-Teaching的噪声标签深度学习
1
作者
夏强强
李菲菲
机构
上海理工大学光电信息与计算机工程学院
出处
《电子科技》
2024年第11期1-6,共6页
基金
上海市高校特聘教授(东方学者)岗位计划(ES2015XX)。
文摘
大规模数据在人为标记时易出现标记误差,导致数据集存在噪声标签,影响深度神经网络模型的泛化。Co-teaching等现行研究方法中的样本选择机制易使噪声样本流入被选的干净标签样本子集,在训练中难以较好地控制深度神经网络模型对被选干净样本子集的拟合。因此,文中提出一个基于Co-teaching改进的新算法。该方法通过增加两个正则化损失来分别避免模型过于信任某单一类别和陷入局部最优解中。此外,引入大学习率衰减训练方法使模型在训练初期更倾向学习干净标签样本特征以得到较好的模型参数。与Co-teaching结果相比,文中模型在20%和50%对称噪声以及45%非对称噪声环境下,在MNIST、CIFAR-10合成噪声数据集及Animal10N现实数据集上的性能均取得了提升。
关键词
深度学习
卷积神经网络
图像分类
噪声标签数据
标签
噪声
学习
Co-teaching训练
学习率
鲁棒损失函数
Keywords
deep learning
convolutional neural network
image classification
noisy-label data
label noise learning
Co-teaching training
learning rate
robust loss function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Co-Teaching的噪声标签深度学习
夏强强
李菲菲
《电子科技》
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部