期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Co-Teaching的噪声标签深度学习
1
作者 夏强强 李菲菲 《电子科技》 2024年第11期1-6,共6页
大规模数据在人为标记时易出现标记误差,导致数据集存在噪声标签,影响深度神经网络模型的泛化。Co-teaching等现行研究方法中的样本选择机制易使噪声样本流入被选的干净标签样本子集,在训练中难以较好地控制深度神经网络模型对被选干净... 大规模数据在人为标记时易出现标记误差,导致数据集存在噪声标签,影响深度神经网络模型的泛化。Co-teaching等现行研究方法中的样本选择机制易使噪声样本流入被选的干净标签样本子集,在训练中难以较好地控制深度神经网络模型对被选干净样本子集的拟合。因此,文中提出一个基于Co-teaching改进的新算法。该方法通过增加两个正则化损失来分别避免模型过于信任某单一类别和陷入局部最优解中。此外,引入大学习率衰减训练方法使模型在训练初期更倾向学习干净标签样本特征以得到较好的模型参数。与Co-teaching结果相比,文中模型在20%和50%对称噪声以及45%非对称噪声环境下,在MNIST、CIFAR-10合成噪声数据集及Animal10N现实数据集上的性能均取得了提升。 展开更多
关键词 深度学习 卷积神经网络 图像分类 噪声标签数据 标签噪声学习 Co-teaching训练 学习率 鲁棒损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部