期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
结合X12乘法模型和ARIMA模型的月售电量预测方法 被引量:46
1
作者 颜伟 程超 +3 位作者 薛斌 李丹 陈飞 王顺昌 《电力系统及其自动化学报》 CSCD 北大核心 2016年第5期74-80,共7页
月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量... 月售电量是具有趋势性、季节性和随机性的非平稳负荷,直接预测难度较大。为解决该问题,结合X12乘法模型与差分自回归移动平均(ARIMA)模型提出一种新的月售电量预测方法。首先,用X12乘法模型将历史月售电量分解为趋势分量、季节周期分量和随机分量,其中趋势分量用ARIMA模型预测,季节周期分量和随机分量分别用加权法和平均法预测;然后,用乘法模型将上述3个分量的预测值还原为最终的月售电量预测值。该方法可避免直接预测月售电量时不同分量间的相互干扰,提高预测精度;最后用重庆市铜梁区实际数据进行仿真分析。仿真结果表明,相对于ARIMA和季节ARIMA模型对月售电量序列直接建模预测的方法,所提方法具有更高的预测精度。 展开更多
关键词 X12乘法模型 差分自回归移动平均模型 售电量预测 分解 还原
在线阅读 下载PDF
基于偏最小二乘回归与比重法的月售电量预测 被引量:17
2
作者 吴杰 宋国堂 +1 位作者 卢志刚 张鸿 《电力系统及其自动化学报》 CSCD 北大核心 2008年第3期66-69,共4页
月售电量的预测受多方面的制约,从影响售电量的因素出发,利用偏最小二乘回归与比重法建立了国民生产总值、人口、社会固定资产投资、人均国民生产总值与售电量的回归预测模型。偏最小二乘方法能够提取若干对系统具有最佳解释能力的综合... 月售电量的预测受多方面的制约,从影响售电量的因素出发,利用偏最小二乘回归与比重法建立了国民生产总值、人口、社会固定资产投资、人均国民生产总值与售电量的回归预测模型。偏最小二乘方法能够提取若干对系统具有最佳解释能力的综合变量来建立预测模型[1],该方法与比重法结合应用于月售电量的预测之中,能更好地体现引起月售电量变化的平稳因素、季节突变因素的周期性,使得月售电量的预测更加准确。利用该预测模型对唐山地区2004年的月售电量进行了预测,月售电量的平均相对误差为4.74%,预测精度较高,证明了该预测模型的准确性。 展开更多
关键词 偏最小二乘回归 比重法 售电量预测 多元线性回归
在线阅读 下载PDF
基于集合经验模式分解的ARIMA行业售电量预测模型 被引量:22
3
作者 林女贵 《电力科学与技术学报》 CAS 北大核心 2019年第2期128-133,共6页
售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序... 售电量的准确预测是电力市场课题研究的重要内容之一,目前已有许多模型用于售电量预测。在此背景下,考虑售电量时间序列的非线性、波动性和周期性,提出基于集合经验模式分解和自回归积分滑动算法的预测模型。该模型首先对售电量时间序列进行集合经验模态分解,通过添加白噪声得到不同时间尺度分布的售电量时间序列,分解后得到一系列相对平稳的本征模态函数和趋势项,然后利用自回归积分滑动算法对各平稳化本征模态函数和趋势项分别进行预测,得到各分量的预测结果,最后将分量预测结果叠加得到最终的售电量预测值。基于历史统计售电量数据的预测结果分析表明,基于集合经验模式分解的 ARIMA模型具有良好的预测精度。 展开更多
关键词 售电量预测 集合经验模式分解 自回归积分滑动平均模型
在线阅读 下载PDF
基于时间卷积网络与图注意力网络的分行业日售电量预测方法 被引量:19
4
作者 顾默 赵兵 陈昊 《电网技术》 EI CSCD 北大核心 2022年第4期1287-1296,共10页
为控制电力成本及提高电力部门绩效考核能力,需要高效准确地进行日售电量预测。深度学习卷积神经网络常被用于电力数据预测,但由于其输入数据信息量有限,现有模型预测存在上限,致使其存在难以捕捉长时特征等问题。为高效准确地预测日售... 为控制电力成本及提高电力部门绩效考核能力,需要高效准确地进行日售电量预测。深度学习卷积神经网络常被用于电力数据预测,但由于其输入数据信息量有限,现有模型预测存在上限,致使其存在难以捕捉长时特征等问题。为高效准确地预测日售电量,提出了一种基于时间卷积网络与图注意力网络相结合的分行业日售电量预测方法,搭建了高维度分行业日售电量预测模型。该方法可同时输入多个行业的日售电量,提取反映单个行业时序特征的高维变量,将多个行业的高维变量进行拼接学习,得到各行业之间的影响因素。通过多个行业日售电量的集成增加输入数据的信息量,从而实现各行业的日售电量预测。以中国东南某城市的21个行业日售电量为实际算例,上述方法的平均误差为4.03%。与时间卷积网络、门控循环单元网络、Facebook的Prophet模型、M4冠军模型指数平滑递归神经网络等进行对比,实验表明,所提出的分行业日售电量预测模型具有更高的预测精度。 展开更多
关键词 售电量预测 时间卷积网络 图注意力网络 高维变量 时序特征
在线阅读 下载PDF
考虑舒适温度区间和突变量的月售电量预测线性回归模型 被引量:12
5
作者 薛斌 程超 +2 位作者 欧世其 刘安祥 王顺昌 《电力系统保护与控制》 EI CSCD 北大核心 2017年第1期15-20,共6页
常规的月售电量预测线性回归模型存在两点影响预测精度的问题:在考虑温度的影响时忽略了舒适温度区间内不存在采暖和制冷措施的事实;由于随机变动不易量化而忽略了随机变动的影响。为解决上述两点问题,提出两种改进措施:分别选择低温阈... 常规的月售电量预测线性回归模型存在两点影响预测精度的问题:在考虑温度的影响时忽略了舒适温度区间内不存在采暖和制冷措施的事实;由于随机变动不易量化而忽略了随机变动的影响。为解决上述两点问题,提出两种改进措施:分别选择低温阈值温度与高温阈值温度,且仅当实际温度低于低温阈值温度或高于高温阈值温度才产生采暖措施或制冷措施;提出将随机变动量化的方法,并将其量化值作为月售电量影响因素纳入预测模型。常规的月售电量预测线性回归模型经过改进后,能更好地建立温度与月售电量的关系,同时能合理地考虑随机变动对月售电量的影响,有利于提高预测精度。用重庆市铜梁区实际数据仿真分析,验证了两种改进措施的有效性。 展开更多
关键词 售电量预测 线性回归模型 影响因素 温度 随机变动
在线阅读 下载PDF
计及偏差电量考核机制的人工神经网络售电量预测模型 被引量:14
6
作者 白登辉 《电工电能新技术》 CSCD 北大核心 2020年第6期58-66,共9页
售电量预测的精度决定了售电公司的运营收益。传统售电量预测方法存在未计及偏差电量考核机制的差异、缺少时序相关性与长程依赖性等问题。为此,提出一种计及偏差电量考核机制的人工神经网络售电量预测模型。首先,根据购售电交易时序特... 售电量预测的精度决定了售电公司的运营收益。传统售电量预测方法存在未计及偏差电量考核机制的差异、缺少时序相关性与长程依赖性等问题。为此,提出一种计及偏差电量考核机制的人工神经网络售电量预测模型。首先,根据购售电交易时序特点重构特征向量。其次,建立基于季节分解的加权模型(SDW)与双向长短期记忆神经网络(Bi-LSTM)分别对年度双边协商月度分解售电量和月度集中竞价售电量进行预测,基于月度偏差考核规则定义非对称损失函数(ALF),关联反向传播过程与整体收益,使网络输出趋向收益最大化。最后,通过数据集进行算例仿真并比较各项性能指标,验证了该模型相比于传统预测模型经济实用性强,准确度高且稳定。 展开更多
关键词 偏差电量考核 非对称损失 售电量预测 双向长短期记忆神经网络 季节分解
在线阅读 下载PDF
基于长短期记忆网络的售电量预测模型研究 被引量:12
7
作者 方志强 王晓辉 夏通 《电力工程技术》 2018年第3期78-83,共6页
售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影... 售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影响因素的相关性,提出一种行业聚类方法,该方法根据不同行业的数据特征对相似的行业进行聚类,并根据聚类结果训练长短期记忆网络模型。文中模型能够学习售电量数据以及相关影响因素的数据特征和内在关联关系。实验结果表明,文中所提出的预测模型比经典的预测模型具有更高的准确度。 展开更多
关键词 深度学习 循环神经网络 长短期记忆网络 售电量预测
在线阅读 下载PDF
基于机器学习的电力大客户群体月度售电量预测研究 被引量:3
8
作者 任腾云 《电网与清洁能源》 2018年第9期1-5,13,共6页
精确的售电量预测对于电力公司合理安排供电计划、科学优化电力资源配置、提高用电管理效率、节约能源降低消耗等方面具有积极作用,电力公司也一直致力于研究售电量、售电收入的变化规律。随着预测技术的不断发展,关于售电量预测的理论... 精确的售电量预测对于电力公司合理安排供电计划、科学优化电力资源配置、提高用电管理效率、节约能源降低消耗等方面具有积极作用,电力公司也一直致力于研究售电量、售电收入的变化规律。随着预测技术的不断发展,关于售电量预测的理论以及方法已有很多,但每一种单一预测模型只能从某一方面刻画数据序列的规律,都只能反映序列的部分信息,因此文中提出了一种综合时间序列分析方法以及多种机器学习算法的电力大客户群体月度售电量预测方法,最大程度地利用现有信息,并对某省总售电量的实例进行检验,结果显示,组合预测模型的误差小于多数单一预测模型的误差,有利于提高预测模型的精度,并且预测较为稳定。 展开更多
关键词 售电量预测 机器学习 时间序列分析
在线阅读 下载PDF
基于STL模型的月售电量综合预测方法 被引量:9
9
作者 刘莉 王彦博 +1 位作者 庞新富 耿赫男 《控制工程》 CSCD 北大核心 2020年第11期1930-1936,共7页
电力零售市场下的月售电量预测面向小规模用户的电力需求,相对于传统意义的负荷预测更易受季节和节假日因素的扰动。传统预测方法直接对电量序列建模预测并未考虑序列分量随时间变化规律,因此预测精度不高。本文提出一种基于STL模型的... 电力零售市场下的月售电量预测面向小规模用户的电力需求,相对于传统意义的负荷预测更易受季节和节假日因素的扰动。传统预测方法直接对电量序列建模预测并未考虑序列分量随时间变化规律,因此预测精度不高。本文提出一种基于STL模型的综合月售电量预测方法,首先利用STL模型特点设置季节分量变化率,针对季节拐点月份和非季节拐点月份的售电特性将其电量时间序列进行个性化分解,将影响月售电量的因素分解成季节分量、趋势分量和随机分量,然后考虑了3个分量随时间的变化特征,分别选取适当的模型进行预测,最后将各分量的预测值重构为月售电量的预测值。基于R语言编制了预测程序,并对某大学园区用电量数据进行案例分析,结果表明所提方法合理有效。 展开更多
关键词 售电量预测 电特性 个性化分解 时间序列 STL模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部