For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was...For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.展开更多
Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were st...Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.展开更多
The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression...The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.展开更多
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
基金Projects (51275138,51605016) supported by the National Natural Science Foundation of ChinaProject (12531109) supported by the Science Foundation of Heilongjiang Provincial Department of Education,ChinaProject supported by Research Start-up Funding of Fudan University,China
文摘For unacceptable computational efficiency and accuracy on the probabilistic analysis of multi-component system with multi-failure modes,this paper proposed multi-extremum response surface method(MERSM).MERSM model was established based on quadratic polynomial function by taking extremum response surface model as the sub-model of multi-response surface method.The dynamic probabilistic analysis of an aeroengine turbine blisk with two components,and their reliability of deformation and stress failures was obtained,based on thermal-structural coupling technique,by considering the nonlinearity of material parameters and the transients of gas flow,gas temperature and rotational speed.The results show that the comprehensive reliability of structure is 0.9904 when the allowable deformations and stresses of blade and disk are 4.78×10–3 m and 1.41×109 Pa,and 1.64×10–3 m and 1.04×109 Pa,respectively.Besides,gas temperature and rotating speed severely influence the comprehensive reliability of system.Through the comparison of methods,it is shown that the MERSM holds higher computational precision and speed in the probabilistic analysis of turbine blisk,and MERSM computational precision satisfies the requirement of engineering design.The efforts of this study address the difficulties on transients and multiple models coupling for the dynamic probabilistic analysis of multi-component system with multi-failure modes.
文摘Combining the optimization and FEM technology,crashworthiness of aluminum extrusions was studied for an automobile safety plan.The effects of longitudinal stiffeners on the crushing of stiffened square columns were studied considering the damage evolution.The numerical analysis was carried out by ABAQUS software.Subsequently,the collapse behavior of aluminum extrusion damage was validated by comparing against solution published in literature.Finally,in order to find more efficient and lighter crush absorber and achieving minimum peak crushing force,response surface methodology(RSM) has been applied for optimizing the aluminum extrusion tube.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by National Outstanding Doctoral Dissertations Special Funds of China
文摘The response surface method(RSM) is one of the main approaches for analyzing reliability problems with implicit performance functions.An improved adaptive RSM based on uniform design(UD) and double weighted regression(DWR) was presented.In the proposed method,the basic principle of the iteratively adaptive response surface method is applied.Uniform design is used to sample the fitting points.And a double weighted regression system considering the distances from the fitting points to the limit state surface and to the estimated design points is set to determine the coefficients of the response surface model.Compared with the conventional approaches,the fitting points selected by UD are more representative,and a better approximation in the key region is also observed with DWR.Numerical examples show that the proposed method has good convergent capability and computational accuracy.
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.