设G是一个图。令 NC(G)=min{|N(u)∪N(V)|{u,v)(?)V(G),uv(?)E(G)},本文主要结论如下:定理1 设 G 是3—连通图,|V(G)|=n,{a,b)(?)V(G).若 G 含有一条(a,b)—控制路,则 G 中存在(a,b)—控制路 P,使得|V(P)|≥min{n,2NC(G)-1}定理2 设 G ...设G是一个图。令 NC(G)=min{|N(u)∪N(V)|{u,v)(?)V(G),uv(?)E(G)},本文主要结论如下:定理1 设 G 是3—连通图,|V(G)|=n,{a,b)(?)V(G).若 G 含有一条(a,b)—控制路,则 G 中存在(a,b)—控制路 P,使得|V(P)|≥min{n,2NC(G)-1}定理2 设 G 是3—连通图,|V(G)|=n,NC(G)≥1/2(n+1).若对于任意{a,b)(?)V(G),G 中都有(a.b)—控制路,则 G 是 Hamilton—连通的。展开更多
文摘设G是一个图。令 NC(G)=min{|N(u)∪N(V)|{u,v)(?)V(G),uv(?)E(G)},本文主要结论如下:定理1 设 G 是3—连通图,|V(G)|=n,{a,b)(?)V(G).若 G 含有一条(a,b)—控制路,则 G 中存在(a,b)—控制路 P,使得|V(P)|≥min{n,2NC(G)-1}定理2 设 G 是3—连通图,|V(G)|=n,NC(G)≥1/2(n+1).若对于任意{a,b)(?)V(G),G 中都有(a.b)—控制路,则 G 是 Hamilton—连通的。