针对相控阵空间太阳能电站系统(solar power satellite via arbitrarily large phased array,简称SPS-ALPHA)中太阳帆骨架自旋展开过程中的简化动力学模型,采用辛算法研究了太阳帆骨架的动力响应,并模拟分析了结构振动特性、约束违约及...针对相控阵空间太阳能电站系统(solar power satellite via arbitrarily large phased array,简称SPS-ALPHA)中太阳帆骨架自旋展开过程中的简化动力学模型,采用辛算法研究了太阳帆骨架的动力响应,并模拟分析了结构振动特性、约束违约及能量保持的情况。首先,建立太阳帆骨架展开过程中的简化模型,基于变分原理将描述简化模型的拉格朗日(Lagrange)方程导入哈密尔顿体系,进而建立模型的正则控制方程;随后,分别采用辛Runge-Kutta方法和经典Runge-Kutta方法模拟骨架结构自旋展开过程,并对比分析了展开过程中的位移约束及能量误差问题。数值模拟结果显示:与经典RungeKutta方法相比,辛Runge-Kutta方法能更好地处理骨架结构自旋展开过程中的约束违约问题及保持系统的总能量不变,并且具有良好的数值稳定性。展开更多
Based on a 2 × 2 eigenvalue problem,a set of(1 + 1)-dimensional soliton equations are proposed.Moreover,we obtain a finite dimensional Hamilton system with the help of nonlinearization approach.Then the genera...Based on a 2 × 2 eigenvalue problem,a set of(1 + 1)-dimensional soliton equations are proposed.Moreover,we obtain a finite dimensional Hamilton system with the help of nonlinearization approach.Then the generating function approach and the way to straighten out of Fm-flow are used to prove the involutivity and the functional independence of conserved integrals for the finite-dimensional Hamilton system,hence,we can verify it is completely integrable in Liouville sense.展开更多
文摘针对相控阵空间太阳能电站系统(solar power satellite via arbitrarily large phased array,简称SPS-ALPHA)中太阳帆骨架自旋展开过程中的简化动力学模型,采用辛算法研究了太阳帆骨架的动力响应,并模拟分析了结构振动特性、约束违约及能量保持的情况。首先,建立太阳帆骨架展开过程中的简化模型,基于变分原理将描述简化模型的拉格朗日(Lagrange)方程导入哈密尔顿体系,进而建立模型的正则控制方程;随后,分别采用辛Runge-Kutta方法和经典Runge-Kutta方法模拟骨架结构自旋展开过程,并对比分析了展开过程中的位移约束及能量误差问题。数值模拟结果显示:与经典RungeKutta方法相比,辛Runge-Kutta方法能更好地处理骨架结构自旋展开过程中的约束违约问题及保持系统的总能量不变,并且具有良好的数值稳定性。
文摘Based on a 2 × 2 eigenvalue problem,a set of(1 + 1)-dimensional soliton equations are proposed.Moreover,we obtain a finite dimensional Hamilton system with the help of nonlinearization approach.Then the generating function approach and the way to straighten out of Fm-flow are used to prove the involutivity and the functional independence of conserved integrals for the finite-dimensional Hamilton system,hence,we can verify it is completely integrable in Liouville sense.