期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向领域的命名实体消歧方法改进研究 被引量:3
1
作者 曾维新 赵翔 +1 位作者 冯滔 唐九阳 《计算机工程与应用》 CSCD 北大核心 2018年第17期126-134,共9页
命名实体消歧是将自然语言文本中具有歧义的实体指称正确地映射到知识库中相应实体上的过程。现有命名实体消歧技术大多采用集体消歧,以利用更多的语义信息达到更高的精度,但存在效率偏低的问题。为此,提出一种基于领域的命名实体消歧方... 命名实体消歧是将自然语言文本中具有歧义的实体指称正确地映射到知识库中相应实体上的过程。现有命名实体消歧技术大多采用集体消歧,以利用更多的语义信息达到更高的精度,但存在效率偏低的问题。为此,提出一种基于领域的命名实体消歧方法,通过引入领域的概念来丰富特征集合,并利用特征集构建实体指称-候选实体的依赖图以实现集体消歧。在构建依赖图的过程中,在现有构造方法的基础上,利用实体指称间的关系在实体指称侧建立联系,进而完善整个依赖图的结构并间接地优化算法处理顺序。在真实评测数据集上的实验结果表明,这种方法比其他同类的方法具有更高的效率和准确度。 展开更多
关键词 命名实体消歧 领域 依赖图 近似算法
在线阅读 下载PDF
基于多步聚类的汉语命名实体识别和歧义消解 被引量:17
2
作者 李广一 王厚峰 《中文信息学报》 CSCD 北大核心 2013年第5期29-34,42,共7页
命名实体识别和歧义消解是自然语言理解的重要研究内容。针对提供实体知识库情况下的命名实体识别和歧义消解任务,该文提出了一种基于多步聚类的方法。首先通过两轮聚类将命名实体与知识库实体定义链接,然后通过层次聚合式聚类对知识库... 命名实体识别和歧义消解是自然语言理解的重要研究内容。针对提供实体知识库情况下的命名实体识别和歧义消解任务,该文提出了一种基于多步聚类的方法。首先通过两轮聚类将命名实体与知识库实体定义链接,然后通过层次聚合式聚类对知识库中未出现的实体进行聚类,最后进行普通词的识别和基于K-Means聚类的结果调整。在CLP-2012的汉语命名实体识别和歧义消解评测数据上的实验表明,该文的方法表现出良好的性能,在测试集上的F值高出评测参赛队伍最好水平6.46%,达到86.68%。 展开更多
关键词 命名实体识别 命名实体消歧 聚类
在线阅读 下载PDF
多特征融合的中文命名实体链接方法研究 被引量:7
3
作者 林泽斐 欧石燕 《情报学报》 CSSCI CSCD 北大核心 2019年第1期68-78,共11页
命名实体链接是利用知识库进行命名实体消歧,将文本中的实体指称映射至知识库中正确义项的一种方法。现有的命名实体链接研究与实践多利用维基百科实现西文实体的消歧,缺乏对中文命名实体消歧的研究。本文以百度百科作为基础知识库,提... 命名实体链接是利用知识库进行命名实体消歧,将文本中的实体指称映射至知识库中正确义项的一种方法。现有的命名实体链接研究与实践多利用维基百科实现西文实体的消歧,缺乏对中文命名实体消歧的研究。本文以百度百科作为基础知识库,提出了一种中文命名实体链接方法,该方法融合了单实体消歧和多实体消歧特征,并根据不同文本长度选用不同的特征组合,同时,在传统一阶段式消歧的基础上添加了第二阶段消歧以改善消歧结果。在真实中文语料上的实验表明,多特征叠加和两段式消歧可较大程度地提升消歧准确率。对比实验显示,本文提出的命名实体链接方法的总体性能优于当前主流同类系统的水平。 展开更多
关键词 命名实体链接 命名实体消歧 多特征 自然语言处理
在线阅读 下载PDF
基于关联数据的命名实体识别 被引量:6
4
作者 刘晓娟 刘群 余梦霞 《情报学报》 CSSCI CSCD 北大核心 2019年第2期191-200,共10页
命名实体识别是自然语言处理的基础性任务,其结果具有广泛的应用。关联数据由于具有丰富的语义知识,能够对现有命名实体识别进一步完善。本文实现了一个基于关联数据的可配置的中英文命名实体识别系统,在识别过程中对实体进行消歧并对... 命名实体识别是自然语言处理的基础性任务,其结果具有广泛的应用。关联数据由于具有丰富的语义知识,能够对现有命名实体识别进一步完善。本文实现了一个基于关联数据的可配置的中英文命名实体识别系统,在识别过程中对实体进行消歧并对识别结果进行扩展,为命名实体识别的进一步完善提供了新的思路。具体包括:基于DBpedia构造了跨领域的中英文命名实体词典;设计了一个基于Hive的分布式管理数据存储模型,基于该模型实现了对DBpedia数据集的组织、存储以及扩展;设计了一个基于图的命名实体识别算法,该算法能够充分利用关联数据的语义关系对命名实体进行消歧,并且基于DBpedia Spotlight NER Corpus对算法进行测试,并将算法结果与DBpedia Spotlight、NERSO以及Zwmanta三个系统进行对比评价,结果表明本文实现的算法在查全率、查准率、F值上具有更好的表现。 展开更多
关键词 命名实体识别 命名实体消歧 关联数据
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部