期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于条件随机场的中医临床病历命名实体抽取 被引量:33
1
作者 刘凯 周雪忠 +1 位作者 于剑 张润顺 《计算机工程》 CAS CSCD 2014年第9期312-316,共5页
中医临床病历是中医重要的科研数据资源,但目前临床病历仍以文本为主要表达形式,对病历数据深入分析的前提是进行结构化信息抽取,而命名实体抽取是其基础性步骤。针对中医临床病历的命名实体,如症状、疾病和诱因等的抽取问题,通过手工... 中医临床病历是中医重要的科研数据资源,但目前临床病历仍以文本为主要表达形式,对病历数据深入分析的前提是进行结构化信息抽取,而命名实体抽取是其基础性步骤。针对中医临床病历的命名实体,如症状、疾病和诱因等的抽取问题,通过手工标注的413份病历数据(以中文字为特征)与4类特征模版,将条件随机场(CRF)、隐马尔科夫模型(HMM)和最大熵马尔科夫模型(MEMM)用于中医病历命名实体抽取的实验,并进行比较分析。结果表明,结合合适的特征模版,CRF命名实体抽取方法取得了较好的性能,F1值的症状达到0.80,疾病名称达到0.74,诱因0.74。与HMM和MEMM相比,CRF有最高的准确率和召回率,是一种较为适用的中医临床病历命名实体抽取方法。 展开更多
关键词 中医临床病历 命名实体抽取 语料库标注系统 条件随机场 特征模板
在线阅读 下载PDF
面向中医临床现病史文本的命名实体抽取方法研究 被引量:11
2
作者 袁玉虎 周雪忠 +1 位作者 张润顺 李晓东 《世界科学技术-中医药现代化》 CSCD 2017年第1期70-77,共8页
目的:中医临床病历作为重要的临床数据,以文本的形式记录了医生和患者交互的整个过程。目前,在大数据的背景下,针对临床病历所涵盖的主体问题信息如现病史的分析利用相关研究仍有所欠缺。因此,本文针对中医临床病历中的现病史部分展开... 目的:中医临床病历作为重要的临床数据,以文本的形式记录了医生和患者交互的整个过程。目前,在大数据的背景下,针对临床病历所涵盖的主体问题信息如现病史的分析利用相关研究仍有所欠缺。因此,本文针对中医临床病历中的现病史部分展开症状术语抽取方法研究,为临床病历的进一步使用奠定基础。方法:首先通过随机挑选与专家审核的方式获得了12 367份现病史数据,按照疾病种类分成了两组实验,其中糖尿病组包含了4 838份数据,脾胃病组7 529份数据,以及合并后的混合组12 367份数据。并整理出了一份涵盖22 996个词的症状术语字典。然后选取滑动窗口特征、词的前后缀特征、词典特征等5种特征模板,使用CRFs模型开展症状术语命名实体抽取实验。结果:在实验结果评价标准(准确率、召回率和F1值)上的表现:在开放测试上的评价结果为(0.83、0.8、0.82)、(0.9、0.9、0.89)和(0.88、0.87、0.87);在十重交叉验证上的评价结果为(0.83、0.82、0.83)、(0.95、0.95、0.95)和(0.93、0.92、0.92)。结论:CRFs模型作为一种优秀的序列标注算法,适用于现病史文本的症状术语命名实体抽取任务。 展开更多
关键词 中医临床病历 现病史 条件随机场 特征模板 命名实体抽取
在线阅读 下载PDF
基于深度表示的中医病历症状表型命名实体抽取研究 被引量:23
3
作者 原旎 卢克治 +5 位作者 袁玉虎 舒梓心 杨扩 张润顺 李晓东 周雪忠 《世界科学技术-中医药现代化》 CSCD 北大核心 2018年第3期355-362,共8页
目的:命名实体识别在自然语言处理中是最基本的任务之一,本文通过应用深度表示的方法实现临床上的现病史数据的自动标识。方法:本文随机选取了10 426条现病史句子作为主要的文本研究对象,分别用词嵌入(word2vec)和网络结构特征(node2vec... 目的:命名实体识别在自然语言处理中是最基本的任务之一,本文通过应用深度表示的方法实现临床上的现病史数据的自动标识。方法:本文随机选取了10 426条现病史句子作为主要的文本研究对象,分别用词嵌入(word2vec)和网络结构特征(node2vec)两种构建向量的方法生成不同的词向量特征,再在基于条件随机场(Conditional Random Field,CRF)和结构化支持向量机(Structured Support Vector Machines,SSVM)的方法上进行十重交叉验证,计算并比较基于深度表示的症状表型命名实体抽取的性能。结果:传统的CRF算法的三个评价指标(准确率,召回率,F值)为(0.888 9,0.786 9,0.834 8);基于WENER方法下的CRF和SSVM的评价指标为(0.975 0,0.984 9,0.979 8)和(0.992 8,0.988 9,0.990 8);在GENER方法下基于词的CRF和SSVM算法的三个评价指标为(0.972 8,0.976 8,0.975 2)和(0.983 3,0.974 5,0.978 8);GENER方法下基于字的CRF和SSVM算法的评价指标为(0.927 8,0.862 8,0.887 9)和(0.943 7,0.946 8,0.941 3)。结论:深度表示的命名实体抽取算法性能要比传统的非深度表示的命名实体标识算法性能好。另外,通过比较深度表示的两种算法的性能后发现,无论是基于word2vec生成的词向量还是基于node2vec生成的词向量,SSVM模型算法性能均优于CRF算法的性能。 展开更多
关键词 条件随机场 结构化支持向量机 命名实体抽取 中医病历
在线阅读 下载PDF
命名实体关系抽取算法的改进 被引量:2
4
作者 李妩可 郭赛球 尹艳 《计算机工程》 CAS CSCD 北大核心 2010年第24期289-290,F0003,共3页
现有命名实体关系抽取算法没有考虑关系特征序列的模式差异。针对该不足,提出一种改进的命名实体关系抽取算法。在语料库中识别出所有命名实体,利用最短依存路径以及与实体本身关系密切的词对实体关系特征进行提取,基于核函数计算关系... 现有命名实体关系抽取算法没有考虑关系特征序列的模式差异。针对该不足,提出一种改进的命名实体关系抽取算法。在语料库中识别出所有命名实体,利用最短依存路径以及与实体本身关系密切的词对实体关系特征进行提取,基于核函数计算关系特征序列的相似度,输出候选命名实体关系对及其关系。实验结果表明,改进算法具有较好的查全率与查准率,其调和平均值可达78%。 展开更多
关键词 命名实体关系抽取 最短依存路径 核函数 调和平均值
在线阅读 下载PDF
基于正反例训练的SVM命名实体关系抽取 被引量:5
5
作者 刘路 李弼程 张先飞 《计算机应用》 CSCD 北大核心 2008年第6期1444-1446,1497,共4页
根据中文命名实体关系抽取的特点,从中文的形态学、语法及语义等几个方面选取特征并构建特征向量,然后将符合特定实体关系模板的候选命名实体对抽取出来并分为正反例。利用正反例样本对支持向量机(SVM)抽取器进行训练,以此来判断候选命... 根据中文命名实体关系抽取的特点,从中文的形态学、语法及语义等几个方面选取特征并构建特征向量,然后将符合特定实体关系模板的候选命名实体对抽取出来并分为正反例。利用正反例样本对支持向量机(SVM)抽取器进行训练,以此来判断候选命名实体对的关系类型。实验证明,本方法能够有效提高中文命名实体关系抽取的准确率。 展开更多
关键词 命名实体关系抽取 SVM算法 实体关系模板 正反例训练
在线阅读 下载PDF
融合BERT、双向长短记忆网络和条件随机场的电力设备缺陷文本实体抽取 被引量:9
6
作者 陈鹏 邰彬 +3 位作者 石英 金杨 孔力 汪进锋 《电网技术》 EI CSCD 北大核心 2023年第10期4367-4375,共9页
随着智能电网建设的全面展开,产生了大量与设备缺陷相关的电力设备缺陷文本,蕴含着故障类型、故障原因及设备消缺方法等关键信息,是电力领域的研究热点。但缺陷文本存在着体量大、多源异构和内容杂乱冗余的问题,目前缺乏对其进行高效整... 随着智能电网建设的全面展开,产生了大量与设备缺陷相关的电力设备缺陷文本,蕴含着故障类型、故障原因及设备消缺方法等关键信息,是电力领域的研究热点。但缺陷文本存在着体量大、多源异构和内容杂乱冗余的问题,目前缺乏对其进行高效整合利用的方法。针对以上问题,该文基于BERT(bidirectional encoder representation from transformers)模型对命名实体抽取技术展开研究。一方面,增加了双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)层进一步提取文本语义信息;另一方面,采用条件随机场(conditional random field,CRF)替换了BERT的输出层,克服了预测标签的局部最优问题。最后融合以上2种策略提出了改进BERT算法,即将BERT与双向长短记忆网络和条件随机场相结合,实现了缺陷文本的命名实体抽取。实验结果表明,改进BERT算法在7类实体上均取得了较高的F1值(精确率和召回率的加权调和平均值)。与BERT相比,实体抽取的总体精确率和召回率分别提升了0.94%和0.95%。 展开更多
关键词 电力设备缺陷文本 命名实体抽取 改进BERT算法 语义信息 输出层 局部最优
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部