期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
考虑滞后效应的CNN-BIGRU-Attention预测降水型滑坡位移
1
作者 肖金涛 王自法 +2 位作者 王超 赵登科 李兆焱 《人民黄河》 北大核心 2025年第3期135-140,145,共7页
为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型... 为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型预测周期项位移,通过叠加趋势项位移和周期项位移得到最终预测位移结果。采用斯皮尔曼相关系数结合滞后性研究分析变量间的滞后关系。以BIGRU-Attention、门控循环单元(GRU)、长短期记忆网络(LSTM)模型为对照,比较CNN-BIGRU-Attention模型预测周期项位移的精确性。结果表明:CNN模型预测以3、6、12 h步长的趋势项位移的R^(2)值分别为0.992、0.977、0.965;CNN-BIGRU-Attention模型预测以3、6、12 h步长的周期项位移的R~2值分别为0.963、0.939、0.896,预测精度均高于BIGRU-Attention、GRU、LSTM模型;基于呷任依村滑坡监测数据,验证了CNN-BIGRU-Attention模型的泛化性。 展开更多
关键词 位移预测 CNN BIGRU ATTENTION 大沙窝滑坡 呷任依村滑坡
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部