A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in ...Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.展开更多
Three kinds of new type solid strong acid catalysts S2O 2-8/ZrO2-Al2O3-M2O3(M=Cr,Ce,La) were prepared. Their crystal structure, surface area, acid strength and sulfur content were determined by means of XRD, BET, fl...Three kinds of new type solid strong acid catalysts S2O 2-8/ZrO2-Al2O3-M2O3(M=Cr,Ce,La) were prepared. Their crystal structure, surface area, acid strength and sulfur content were determined by means of XRD, BET, flow Hammett indicator method and chemical analysis. Their catalytic activities in esterification reaction of acetic acid with n-butanol were studied. The results showed that ZrO2 in the catalysts mainly in tetragonal phase and few in monoclinic phase. The tetragonal phase of ZrO2 and S2O 2-8 are the key factors that guarantee the catalytic activity. Incorporation of appropriate amounts of metallic oxides(Cr2O3,Ce2O3,La2O3) into the catalyst favors the stabilization of sulfur species and surface area, which increase the activity sites on the catalyst. The experimental results showed that three catalysts S2O 2-8/ZrO2-Al2O3(2%)-M2O3(1%)(M=Cr,Ce,La) had higher catalytic activity in mentioned esterification, with the conversion of acetic acid reached 96.8%, 95.7% and 96.1%, respectively. The preparation condition of the catalysts showed great influence on the catalytic activity.展开更多
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.
文摘Nano-particle Pd/?-Al2O3 monometallic and Pd-Cu/?-Al2O3 bimetall ic catalysts were prepared by solvated metal atom impregnation (SMAI) method. Th e results of XRD measurement indicated that Pd- Cu alloy was formed in the bim etallic catalysts and the crystalline particle size of the alloy increased as Cu contents increased with average diameters < 6.0nm for all the samples. XPS and Auger spectra showed that Pd was in zero- valent state, Cu existed mainly in z ero- valent state and partially in monovalent state Cu+. The Pd/?-Al2O3 and Pd-Cu/?-Al2O3 catalysts exhibited higher activity for CO oxidation at low temperature. The activity of Pd-Cu/?-Al2O3 bimetallic catalyst was hig her than that of Pd/?-Al2O3 monometallic catalyst. The Pd-Cu/?-Al2O3 c atalyst with Pd/Cu atomic ratio of 1∶1 showed the highest activity.
文摘Three kinds of new type solid strong acid catalysts S2O 2-8/ZrO2-Al2O3-M2O3(M=Cr,Ce,La) were prepared. Their crystal structure, surface area, acid strength and sulfur content were determined by means of XRD, BET, flow Hammett indicator method and chemical analysis. Their catalytic activities in esterification reaction of acetic acid with n-butanol were studied. The results showed that ZrO2 in the catalysts mainly in tetragonal phase and few in monoclinic phase. The tetragonal phase of ZrO2 and S2O 2-8 are the key factors that guarantee the catalytic activity. Incorporation of appropriate amounts of metallic oxides(Cr2O3,Ce2O3,La2O3) into the catalyst favors the stabilization of sulfur species and surface area, which increase the activity sites on the catalyst. The experimental results showed that three catalysts S2O 2-8/ZrO2-Al2O3(2%)-M2O3(1%)(M=Cr,Ce,La) had higher catalytic activity in mentioned esterification, with the conversion of acetic acid reached 96.8%, 95.7% and 96.1%, respectively. The preparation condition of the catalysts showed great influence on the catalytic activity.