期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
重构震源振幅谱一致性的吸收参数反演方法 被引量:1
1
作者 马雄 申天赐 +2 位作者 李国发 桂志先 李勇根 《石油地球物理勘探》 EI CSCD 北大核心 2024年第1期122-132,共11页
谱比法和质心频移法是两种工业应用较为广泛的品质因子Q反演方法,它们主要依靠地震振幅谱的某个单一属性(对数谱比斜率或者质心频率)对地层吸收参数进行估算和反演,因而反演结果很容易受到地震噪声和波场干涉等因素的影响。为此,提出一... 谱比法和质心频移法是两种工业应用较为广泛的品质因子Q反演方法,它们主要依靠地震振幅谱的某个单一属性(对数谱比斜率或者质心频率)对地层吸收参数进行估算和反演,因而反演结果很容易受到地震噪声和波场干涉等因素的影响。为此,提出一种基于重构震源振幅谱一致性的地层吸收参数反演方法。其核心思想是将地震信号沿射线路径向震源位置反向传播,并进行吸收补偿,然后利用地震信号在震源位置重构的振幅谱一致性进行地层吸收参数反演。该方法既不需要已知震源子波,也不需要提取地震信号振幅谱的某个特定属性,具有提高地层吸收参数反演精度的潜力。模型实验表明:相较于谱比法和质心频移法,该方法具有更高的反演精度和更强的抗噪性。M区块应用结果表明:该方法能够为后续的吸收补偿提供高精度的吸收结构模型,有较好的工业应用前景。 展开更多
关键词 吸收参数反演 振幅谱一致性 反向传播 吸收补偿 吸收结构模型
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
2
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部