针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。...针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。实验表明,该方法六类缺陷混合识别率达到95.26%,高于BP神经网络的最优识别率90.35%和基于区域方法的80.67%,而且训练和分类时间短。从理论和实验中验证了该方法的有效性,是PCB产品视觉检测领域中缺陷识别分类的新方法,具有重要的应用价值。展开更多
随着网络信息的迅猛发展,信息处理已经成为人们获取有用信息不可缺少的工具,文本自动分类系统是信息处理的重要研究方向.本文介绍了当今世界上较先进的"变换支持向量机"(TSVM,transductive support vectormachines)技术,它与...随着网络信息的迅猛发展,信息处理已经成为人们获取有用信息不可缺少的工具,文本自动分类系统是信息处理的重要研究方向.本文介绍了当今世界上较先进的"变换支持向量机"(TSVM,transductive support vectormachines)技术,它与普通的"支持向量机"(SVM)相比,TSVM方法所需的样本量大大降低,它能有效地对小样本数据集进行分类,同时重点分析了实现它的关键技术、算法及其实现过程.展开更多
A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. ...A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.展开更多
文摘针对PCB产品视觉检测中图像缺陷细微、形状复杂、特征难于提取、易受噪声影响的问题,提出基于小波变换和光滑支持向量机集成SSVME(Smooth Support Vector Machine Ensemble)的多分类方法,有效解决了细微、复杂缺陷难以识别分类的问题。实验表明,该方法六类缺陷混合识别率达到95.26%,高于BP神经网络的最优识别率90.35%和基于区域方法的80.67%,而且训练和分类时间短。从理论和实验中验证了该方法的有效性,是PCB产品视觉检测领域中缺陷识别分类的新方法,具有重要的应用价值。
文摘随着网络信息的迅猛发展,信息处理已经成为人们获取有用信息不可缺少的工具,文本自动分类系统是信息处理的重要研究方向.本文介绍了当今世界上较先进的"变换支持向量机"(TSVM,transductive support vectormachines)技术,它与普通的"支持向量机"(SVM)相比,TSVM方法所需的样本量大大降低,它能有效地对小样本数据集进行分类,同时重点分析了实现它的关键技术、算法及其实现过程.
基金Project(60873010) supported by the National Natural Science Foundation of ChinaProjects(N090504005, N090604012, N090104001) supported by the Fundamental Research Funds for the Central UniversitiesProject(NCET-05-0288) supported by Program for New Century Excellent Talents in University
文摘A novel histogram descriptor for global feature extraction and description was presented. Three elementary primitives for a 2×2 pixel grid were defined. The complex primitives were computed by matrix transforms. These primitives and equivalence class were used for an image to compute the feature image that consisted of three elementary primitives. Histogram was used for the transformed image to extract and describe the features. Furthermore, comparisons were made among the novel histogram descriptor, the gray histogram and the edge histogram with regard to feature vector dimension and retrieval performance. The experimental results show that the novel histogram can not only reduce the effect of noise and illumination change, but also compute the feature vector of lower dimension. Furthermore, the system using the novel histogram has better retrieval performance.